Lcr t7 инструкция скачать на русском языке

1 апреля 2021

Устройство для распознавания и тестирования радиодеталей

Введение

Практически во всех цифровых мультиметрах, начиная с самых древних серии D830, имеется в наличии функция проверки биполярных транзисторов с отдельным круглым разъёмом. Однако в том мультиметре, который я приобрел для себя (HoldPeak HP-41B), данный функционал отсутствовал. И такая покупка была осознанной, ибо к моменту приобретения мультиметра я уже знал про такой класс приборов, как тестеры транзисторов. Один из них в конечном итоге пополнил мою домашнюю лабораторию, и о нём сегодня пойдёт речь.

Но перед тем, как перейдём непосредственно к обзору прибора, хотелось бы сказать пару слов о том:

Что такое «тестер транзисторов»?

В учебной литературе про тестеры транзисторов говорится, что это приборы для проверки электрических свойств транзисторов и полупроводниковых диодов. Но в нашем случае проверкой и тестами только транзисторов и диодов дело не обходится. Впрочем, и измерять все параметры транзисторов наш гаджет не сможет, особенно те, которые касаются предельных токов, напряжений и частот.

Помимо измерения параметров радиодеталей и их характеристик, данный класс приборов автоматически распознаёт (не всё, конечно – зависит от конкретной модели и даже прошивки), что за электронные компоненты подключены к нему, их тип и разводку выводов (цоколёвку).

Поход к выбору модели

Сразу оговорюсь, что это сугубо мой личный подход со своими критериями по параметрам и характеристикам, что в итоге привело к покупке именно того прибора, который и будет обозреваться.

Мои требования к будущему тестеру транзисторов вылились всего в три пункта:

  • Доступность по цене;
  • Функциональность;
  • Готовность к использованию из коробки.

Первый пункт сразу отрезал путь поиска в направлении профессиональных приборов, а последний заставил изучать ассортимент предложений на AliExpress, т.к. на рынке имеется множество подобных приборов, выполненных в виде готового конструктора (чаще – только в виде платы), для которого нужно ещё подобрать соответствующий корпус. Если вам не чужда работа с ножовкой или есть 3D принтер, то можете смело брать тестеры транзисторов в варианте «Только плата». На худой конец можно выбрать готовый корпус для таких плат.

Но так как я решил не заморачиваться с бескорпусными тестерами транзисторов, то мой список отбора сразу сократился до следующих моделей:

  • BSIDE ESR02 PRO;
  • Различные коробочные версии тестеров серии «М328» с монохромными и цветными дисплеями ;
  • Тестеры серии TC1 (LCR-TC1);
  • Тестеры серии T5 (LCR-T5);
  • Тестеры серии T7 (LCR-T7 и T7-H).

Кратко рассмотрим возможности каждого из тестеров, а также их плюсы и минусы:

BSIDE ESR02 PRO

Данный прибор выделяется своим назначением – тестирование и измерение параметров мелких SMD деталей, для чего на его корпусе разработчики расположили несколько контактных площадок различной формы. В наличии также специальные контактные площадки для тестирования выводных деталей. Среди тестируемых деталей значатся диоды (в т.ч. составные), биполярные и полевые транзисторы, тиристоры симисторы, резисторы, конденсаторы и индуктивности. Кроме того, y некоторых продавцов указана возможность для данной модели автоматически определять стабилитроны с напряжением стабилизации не более 4,5 вольт.

Плюсы:

  • Качественный корпус, на задней панели которого присутствует таблица допустимых значений ESR (Equivalent Series Resistance – эквивалентное последовательное сопротивление) конденсаторов в зависимости от их ёмкости и напряжения;
  • Возможность питания от внешнего 12-вольтового адаптера в дополнение к автономной работе от батареи напряжением 9 вольт (типа «Крона»);
  • Наличие места для размещения (не тестирования) мелких деталей;
  • Площадка для разрядки конденсаторов;
  • Информативная разметка контактных площадок;
  • SMD щупы в комплекте;
  • Подсветка дисплея.

Минусы:

  • Малое разрешение экрана, которое накладывает ограничение на количественное и качественное отображение информации.

Стоимость на момент написания обзора (минимальное предложение со всеми скидками от продавца без учета купонов): 21,2$.

Тестеры серии «М328»

Данная серия тестеров транзисторов по функциональности практически ничем не отличается от предыдущей, за исключением того факта, что дисплей имеет большее разрешение, а информация может выводиться в цвете (для моделей с цветным дисплеем). В отличие от функционала, качество сборки у M328 сильно «гуляет» от модели к модели, и есть большой шанс приобрести неработоспособный прибор.

Плюсы:

  • Большой информативный дисплей разрешением 128х160 пикселей (модели с монохромным дисплеем, как правило, с меньшим разрешением);
  • Большое количество прошивок, которые подходят от одноименных бескорпусных моделей (например, серия FISH8840) и расширяют функционал прибора.

Минусы:

  • Некоторые экземпляры «болеют» повышенным энергопотреблением;
  • ZIF разъём плохо держится в разъёме самого тестера;
  • Есть большой шанс приобрести прибор с низкокачественной сборкой.

Стоимость на момент написания обзора (без учета купонов): 13,9$.

Тестеры серии TC1, T5, T6 и T7

Данные тестеры внутрисхемно, внешне и функционально мало чем отличаются друг от друга, в том числе и по части интерфейса. Основное отличие между ними заключается в том, что модели TC1 и T7 оснащаются цветным дисплеем разрешением 128х160 пикселей (T7-H – 128х128), а T5 и T6 – монохромным разрешением 128х64 пикселей.

При этом модель T7 отличается от TC1, согласно документации от продавца, лишь небольшим приростом скорости в работе, а также тем, что у TC1 дисплей чуть-чуть больше. В свою очередь модель, T7-H выделяется значительно большим приростом производительности при снижении разрешения дисплея и напряжения для тестирования стабилитронов (20 вольт вместо 30 вольт у остальных моделей серии).

Модели T5 и T6 с монохромными дисплеями имеют тот же функционал, что и серия T7, за одним исключением: модель T5 не имеет отдельной площадки контактов для тестирования стабилитронов с напряжением стабилизации свыше 4,5 вольт. Тем не менее, исправные стабилитроны с напряжением стабилизации до 4,5 вольт определяются T5 автоматически (как и все модели серии).

В дополнение к стандартному набору проверки и тестирования диодов, стабилитронов, транзисторов (биполярных и полевых), тиристоров с симисторами, резисторов, конденсаторов и индуктивностей, в рассматриваемой линейке тестеров имеется возможность получения формы сигнала и его цифрового кода с ИК-пультов дистанционного управления, совместимых со стандартом Hitachi. Кроме того, все модели серии оснащены встроенным аккумулятором, который может заряжаться от любого зарядного устройства с microUSB-разъёмом.

Стоимость мультиметров с учетом стоимости доставки на момент написания обзора (без учета купонов):

  • TC1: 13,88$
  • T5: 25,8$
  • T6: 31,96$
  • T7: 13,82$
  • T7-H: 16,13$

Плюсы:

  • Высокая скорость работы;
  • Более продуманный пользовательский интерфейс, который в полной мере задействует возможности цветного дисплея;
  • Возможность проверять стабилитроны с повышенным напряжением стабилизации;
  • Тестирование ИК-пультов (сомнительно);
  • Компактные размеры;
  • Питание от встроенного аккумулятора.

Минусы:

  • Пока нет возможности задействовать в сторонних прошивках функционал по проверке стабилитронов с повышенным напряжением стабилизации (>4,5 В) и возможности ИК-датчика;
  • После «заливки» в прибор сторонней прошивки нет возможности сделать откат на родную прошивку (кроме модели TC1).

Мой выбор

Из приведенных тестеров транзисторов практически сразу отпали модели LCR-T5 и LCR-T6 из-за своей высокой цены и небольшого предложения. Далее аналогичная участь ждала всю 328-ю серию из-за наличия больших проблем с качеством продукции. Модель BSIDE ESR02 PRO также уступила оставшимся моделям серии T7 и TC1 – в первую очередь из-за своей относительно высокой цены при чуть меньших функциональных возможностях, даже несмотря на более качественное исполнение. К тому же T7 и TC1 питались от аккумуляторов и имели цветные дисплеи большего разрешения.

Из оставшейся тройки приборов первой выбыла модель T7-H: при мало что значащей и не видимой на глаз повышенной скорости работы, она имела дисплей меньшего разрешения, а также обладала более узким диапазоном измеряемых стабилитронов (до 20 вольт вместо 30).

Если бы я делал покупки сегодня, а не месяц назад, то в итоге в обзоре, возможно, оказалась бы совсем иная модель тестера транзисторов. На момент покупки она стоила почти на 5$ дешевле остальных рассматриваемых моделей, и поэтому мой выбор пал на модель LCR-T7. Однако сейчас она стоит почти так же, как и TC1, которая имеет возможность отката на оригинальную прошивку. Но я не собирался проводить эксперименты по перепрошивке приборов, и поэтому мой выбор был в пользу более дешевой модели, как это ни банально.

Так что дальше нас ждёт небольшой:

Обзор тестера транзисторов LCR-T7

К моменту написания обзора по тестеру транзисторов как раз вовремя приехала из Китая паяльная станция на жалах типа T12, с помощью которой по-быстрому отпаял со сгоревшего блока питания от компьютера несколько радиодеталей, которые участвовали в испытаниях тестера:

Внешний вид

Прибор приехал в запаянном антистатическом пакете:

Внутри этого пакета лежали сам прибор, три щупа-зажима типа «крючок» с разъёмом DuPont, а также ещё один пакет с прочими аксессуарами:

Во втором антистатическом пакете лежали короткий microUSB-кабель для зарядки встроенного аккумулятора, трехконтактная перемычка для проведения самотестирования прибора, маленький электролитический конденсатор на 25 вольт и ёмкостью 10 микрофарад, а также красный светодиод для возможности перейти к проверке тестера прямо из коробки:

На передней панели прибора находятся дисплей, на котором отображается вся информация о тестируемых деталях, всего одна кнопка, с помощью которой производится всё управление, ZIF-разъём, в который вставляются проверяемые детали или щупы в случае, если детали слишком крупные или очень мелкие. А между кнопкой и разъёмом находится небольшое круглое окошко для ИК-фотодиода, с помощью которого LCR-T7 определяет форму сигнала с пультов дистанционного управления и их цифровые коды.

Сам ZIF-разъём имеет несколько дублирующих контактных площадок, пронумерованных 1-2-3, а также отдельный блок контактов в нижнем левом углу для тестирования стабилитронов с повышенным напряжением стабилизации (>4,5 В) и обозначением КАА (катод-анод-анод). Следует учитывать, что в этом блоке «распиновка» стабилитронов не определяется автоматически и их нужно подключать так, как указано в обозначении контактов.

Снизу корпуса прибора находится microUSB-разъём, через который подзаряжается прибор, и светодиодный индикатор состояния зарядки (красный – идёт процесс разрядки, а зелёный сигнализирует об окончании этого процесса):

Первое включение

Короткое нажатие на единственную кнопку прибора запустит процесс определения и тестирования вставленной в него радиодетали:

На экране выводятся сообщение о том, что проводится процесс тестирования, информация о напряжении встроенного аккумулятора и подсказка с распиновкой ZIF-разъёма. По окончании тестирования, если в прибор не была вставлена радиодеталь или же она оказалась неисправной, а также если она не поддерживается для распознавания, получим такое сообщение:

Через 20 секунд или меньше, в зависимости от заводской настройки прибора, он выключится автоматически. Его можно также выключить вручную – длительным нажатием кнопки. Короткое нажатие на кнопку запустит повторный тест.

Перед началом тестирования радиодеталей тестер транзисторов рекомендуется откалибровать. Делается это очень просто: для этого необходимо вставить в выключенный тестер тройную перемычку из комплекта поставки, замкнув все три контакта 1-2-3 (в любом месте), а затем нажать на кнопку «Start». После этого запустится самодиагностика прибора:

Через некоторое время прибор попросит избавиться от перемычки и продолжит процесс самотестирования, который завершится выводом информации о версии микропрограммного обеспечения прибора:

После этого уже можно приступить непосредственно к:

Проверка радиодеталей

Для проверки радиодеталей их выводы необходимо подключить к прибору, вставив их непосредственно в ZIF-разъём или с помощью щупов-зажимов из комплекта. Выводы нужно подключать так, чтобы они попали в контактные площадки под разными номерами, т.е. трехвыводные детали обязательно должны быть на контактных площадках под номерами 1-2-3, тогда как двухвыводные – в любых двух из трёх.

Обычный резистор на 51 Ом с 5-процентным допустимым отклонением от номинала:

Прибор правильно определил, что вставленная деталь – это резистор с сопротивлением 50 Ом (отклонение 2%, что в пределах нормы), который был подключен к контактным площадкам прибора под номерами 1 и 2.

Трехвыводные переменные резисторы тоже можно проверить:

Определение обычных конденсаторов и их ёмкости:

При тесте электролитических конденсаторов, помимо их ёмкости, определяется эквивалентное последовательное сопротивление (ESR) и нестандартный параметр Vloss (падение напряжения, выраженное в процентах):

Хотелось бы немного пояснить по поводу эквивалентного последовательного сопротивления, вернее, наличия великого множества таблиц допустимых значений ESR для электролитических конденсаторов, которые присутствуют на просторах Всемирной паутины. Дело в том, что производители в спецификациях на каждый тип конденсаторов указывают свои допустимые величины этого параметра. Поэтому одно и то же значение ESR для конденсаторов одинаковой ёмкости и напряжения, но различного типа (напр., алюминиевого и танталового), будет указывать на то, что танталовый конденсатор более низкого качества, (вероятность того, что алюминиевый конденсатор получился сравнимым по качеству с танталовым, очень низкая).

Отсюда вывод – ищите правильные таблицы для своих конденсаторов, чтобы не отправить на свалку исправную деталь.

А вот что касается отображаемого параметра Vloss, то тут, как правило, имеется в виду падение напряжения во время измерения ёмкости конденсатора, выраженное в процентах. И чем оно ниже, тем лучше.

Вот, например, другой электролитический конденсатор с очень маленьким значением ECR, но с Vloss вдвое большим, чем у предыдущего экземпляра:

Обычный диод:

Тестер автоматически определяет, что это диод, к каким контактам подключены анод и катод, а также выводит его параметры: напряжение падения (Uf=703 мВ), ёмкость p-n перехода (C=4 пФ) и ток утечки (Ir=31 нА).

При тестировании диодов Шоттки прибор не показывает ёмкость (у таких диодов нет привычного p-n перехода):

Прибор отлично справляется с определением сдвоенных диодов, показывая для каждого из диодов напряжение падения:

Микросхема стабилизатора напряжения TL431 также определяется как сдвоенный диод:

Обычные биполярные транзисторы:

Тут мы видим:

  • Тип транзистора (BJT Bipolar Junction Transistor, т.е. биполярный транзистор);
  • Проводимость (PNP или NPN);
  • К каким контактам подключены база (B), коллектор (C) и эмиттер (E);
  • Коэффициент усиления по току в схеме с общим эмиттером (hFE);
  • Напряжение перехода база-эмиттер (Ube);
  • Ток коллектора, при котором производилось измерение (Ic).

Полевой транзистор:

Тут отображаются:

  • Тип транзистора (MOS, он же MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor, металл-оксидный-полупроводниковый транзистор с полевым эффектом);
  • Тип MOSFET транзистора (N-E: МОП транзистор с индуцированным N-каналом);
  • К каким контактам подключены исток (Source), сток (Drain) и затвор (Gate);
  • Vt – напряжение открывания перехода;
  • Cg – ёмкость затвора;
  • Rds – прямое сопротивление открытого канала d (сток) – s (исток);
  • Uf – напряжение падения на защитном (паразитном) диоде и схема его включения.

Мощные симисторы и тиристоры прибор определяет как резисторы:

Хотя такое поведение может быть и с неисправными полупроводниками.

С маломощными симисторами ситуация с их определением вполне нормальная:

Стабилитронов в моей коллекции не оказалось, поэтому для проверки выделенной контактной площадки для стабилитронов, в которой они проверяются, я использовал обычные диоды, которые также могут выступать в этой роли (если ток небольшой):

Исправные дроссели показывают индуктивность и сопротивление:

Несправный дроссель, который имеет большее количество витков и больший диаметр сердечника, показывает на приборе мизерное значение индуктивности и малое сопротивление, что указывает на наличие межвиткового замыкания в нём:

Справляется прибор и с определением обычных батареек, но долго (как с конденсаторами):

И напоследок – неоднозначная функция проверки формы сигнала с пультов дистанционного управления и получения цифрового кода:

Здесь красный кружок в верхнем правом углу говорит о том, что прибор получает сигнал по ИК-каналу. Ниже – форма сигнала и его цифровой код для значения UserCode (он же код производителя – для одного пульта ДУ не меняется), а чуть ниже – аналогичные данные для DataCode, управляющего кода с клавиш пульта управления. Единственное место, где это может пригодиться – универсальные пульты управления, которые программируются по коду производителя с неизвестной маркой.

Вывод

Хороший прибор в качестве дополнения к мультиметру, который, однако, не заменяет его. Может сильно выручить в ситуациях, когда у детали стёрта маркировка и ты не знаешь не то что распиновку, а даже вид радиодетали. С ним легко подобрать детали с близкими характеристиками, особенно если деталей очень много. Но стоит учитывать, что полагаться на точность показаний таких приборов не стоит.

Какой из приборов себе брать – каждый решает сам исходя из своих требований. Тем более что такой прибор можно собрать и самому.

Ссылки по теме

  • Лаборатория радиолюбителя с нуля. Часть 1. Муки выбора мультиметра
  • Лаборатория радиолюбителя с нуля. Часть 2. Обзор таинственного мультиметра
  • Мелочи жизни радиолюбителя

Тестеры транзисторов являются неотъемлемой частью электронной отладочной и ремонтной техники. Они позволяют определить параметры и характеристики транзисторов, выявить неисправности и подобрать аналоги. В этой статье мы рассмотрим тестер транзисторов LCR T7, который является одним из самых популярных и функциональных устройств в своем классе.

Тестер транзисторов LCR T7 представляет собой портативное, компактное и простое в использовании устройство. Он оснащен большим, ярким дисплеем, на котором отображается информация о параметрах тестируемого транзистора, а также встроенными кнопками и портами для подключения других устройств. Это позволяет быстро и удобно работать с тестером и делает его доступным даже для новичков в области электроники.

LCR T7 поддерживает широкий диапазон типов транзисторов, включая биполярные, полевые и диоды. Он позволяет измерять такие параметры, как коэффициент усиления, пороговое напряжение, емкость и сопротивление. Кроме того, устройство оснащено функцией автоматического определения типа транзистора и непосредственной активации соответствующего режима измерений, что значительно упрощает работу пользователя.

Одним из наиболее полезных преимуществ LCR T7 является его богатый набор возможностей. Помимо тестирования транзисторов, устройство также позволяет измерять сопротивление, ёмкость, индуктивность и даже частоту. Качество измерений обеспечивается использованием высокоточных компонентов и передовых технологий.

В целом, тестер транзисторов LCR T7 является мощным и универсальным инструментом для работы с транзисторами и другими электронными компонентами. Он может использоваться как в профессиональных целях, так и в домашних условиях. Благодаря своей простоте и функциональности, LCR T7 станет незаменимым помощником для любого электроника с любым уровнем опыта и навыков.

Содержание

  1. Обзор тестера транзисторов LCR T7
  2. Руководство по использованию тестера транзисторов LCR T7
  3. Характеристики тестера транзисторов LCR T7
  4. Преимущества использования тестера транзисторов LCR T7

Обзор тестера транзисторов LCR T7

Тестер транзисторов LCR T7 представляет собой универсальное устройство для тестирования и анализа транзисторов. Этот тестер обладает множеством функций и возможностей, которые делают его незаменимым инструментом в работе с электроникой.

LCR T7 позволяет определить основные характеристики транзисторов, такие как тип, положение выводов, коэффициент усиления, жизнеспособность и другие параметры. Устройство оснащено широким экраном, на котором выводится подробная информация о результатах теста.

Одной из особенностей LCR T7 является возможность тестирования транзисторов не только в отдельности, но и в составе схемы. Такое интегрированное тестирование позволяет быстро и эффективно проверить работоспособность всей схемы и выявить возможные неисправности.

LCR T7 обладает удобным и интуитивно понятным пользовательским интерфейсом, что значительно упрощает работу с устройством. Кроме того, тестер имеет компактный и портативный дизайн, что позволяет использовать его в любых условиях и везде, где это необходимо.

Преимущества тестера LCR T7 включают:

  • Многофункциональность: тестер имеет широкий диапазон функций, которые позволяют проводить различные типы тестов и анализировать результаты.
  • Высокая точность: благодаря современным технологиям и качественным компонентам, LCR T7 обеспечивает высокую точность измерений.
  • Быстрая обработка данных: устройство оснащено мощным процессором, что позволяет быстро обрабатывать полученную информацию и выводить результаты на экран.
  • Удобство использования: устройство имеет интуитивно понятный интерфейс и компактный дизайн, что делает его простым в использовании и удобным для переноски.
  • Надежность: LCR T7 выполнен из прочных материалов и имеет высокую степень надежности, что обеспечивает долгий срок службы.

В заключение, тестер транзисторов LCR T7 является незаменимым инструментом для работы с электроникой. Он обладает широкими возможностями и преимуществами, которые делают его популярным среди профессионалов и любителей. Благодаря высокой точности и удобству использования, LCR T7 позволяет быстро и эффективно проводить тестирование и анализ транзисторов, что делает его незаменимым помощником в работе с электроникой.

Руководство по использованию тестера транзисторов LCR T7

Преимущества тестера транзисторов LCR T7:

  • Быстрые и точные измерения: тестер оснащен высокочастотной генерацией сигнала, что позволяет получать результаты измерений за считанные секунды.
  • Широкий диапазон измеряемых параметров: LCR T7 позволяет измерять такие параметры, как hFE, UBE, UCE, RB, CBE, CCB и др.
  • Многофункциональность: помимо измерений транзисторов, прибор способен также измерять сопротивления, емкости и индуктивности элементов.
  • Удобное и интуитивно понятное использование: LCR T7 оснащен большим и ярким LCD-дисплеем, который отображает необходимую информацию. Устройство также имеет удобные кнопки и меню.
  • Портативность: благодаря компактным размерам и встроенному аккумулятору, LCR T7 легко брать с собой в поездки или использовать на рабочем столе.

Использование тестера транзисторов LCR T7:

1. Подключите тестер к исследуемому транзистору с помощью кабеля или зажимов, в зависимости от типа подключения на приборе. Убедитесь, что соединения сделаны правильно и надежно.

2. Включите тестер и дождитесь инициализации прибора.

3. Выберите режим работы, соответствующий измеряемому параметру: транзисторы, сопротивления, емкости или индуктивности. Для этого воспользуйтесь кнопками управления или меню на дисплее.

4. Следуйте инструкциям на дисплее, чтобы выполнить необходимое измерение. Обычно требуется нажатие нескольких кнопок или выполнение нескольких действий для получения результата.

5. Оцените полученные результаты. Проверьте, соответствуют ли они техническим характеристикам транзистора или измеряемого элемента.

6. После использования выключите тестер и отсоедините его от исследуемого транзистора.

Параметр Диапазон измерения Разрешение
hFE 0-3000 0.01
UBE 0-1.5 В 1 мВ
UCE 0-15 В 10 мВ
RB 0-20 МОм 1 КОм
CBE 0-1000 мкФ 1 мкФ
CCB 0-1000 мкФ 1 мкФ

Характеристики тестера транзисторов LCR T7

Одной из главных характеристик тестера транзисторов LCR T7 является его высокая точность и надежность измерений. Устройство обеспечивает высокую степень точности при определении параметров транзисторов, таких как коэффициент усиления, пороговое напряжение и другие.

Также стоит отметить широкий диапазон измеряемых параметров. Тестер транзисторов LCR T7 способен измерять не только параметры биполярных транзисторов, но и параметры MOSFET-транзисторов и полевых (JFET) транзисторов, что делает его универсальным инструментом для работы с различными типами транзисторов.

Еще одной важной характеристикой тестера транзисторов LCR T7 является его удобный и интуитивно понятный интерфейс. Устройство оснащено большим цветным дисплеем, на котором отображаются результаты измерений и информация о параметрах транзистора. Интерфейс обладает простыми и понятными меню, что позволяет легко и быстро освоить устройство.

Тестер транзисторов LCR T7 также имеет компактный размер и небольшой вес, что делает его очень удобным в использовании. Устройство можно легко брать с собой в поездки или хранить на рабочем столе без занимания много места.

В целом, тестер транзисторов LCR T7 обладает отличными характеристиками, которые делают его незаменимым инструментом для анализа и проверки транзисторов. С его помощью можно быстро и точно определить параметры транзистора, что позволяет сэкономить время и усилия при разработке и отладке электронных устройств.

Преимущества использования тестера транзисторов LCR T7

1

Быстрая и точная проверка транзисторов.

2

Возможность проверять транзисторы, диоды, конденсаторы и резисторы.

3

Автоматическое определение типа транзистора и вывод его параметров.

4

Возможность измерять ёмкость, индуктивность и сопротивление компонентов.

5

Удобный и простой в использовании интерфейс.

6

Портативный и компактный дизайн, который позволяет брать его с собой.

7

Огромный диапазон измерений, который покрывает большинство электронных компонентов.

8

Отображение результатов измерений на большом и четком дисплее.

Все эти преимущества делают тестер транзисторов LCR T7 незаменимым инструментом для электронщиков и любителей электроники.

логотип joy-it

JOY-iT JT-LCR-T7 Руководство пользователя многофункционального тестера

JOY-iT JT-LCR-T7 Многофункциональный тестер

1. ОСНОВНАЯ ИНФОРМАЦИЯ

Уважаемый покупатель, благодарим Вас за выбор нашего продукта. Далее мы покажем вам, как использовать это устройство. Если вы столкнетесь с неожиданными проблемами во время использования, не стесняйтесь обращаться к нам.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Этот измеритель LCR предлагает широкий спектр функций по невысокой цене. Измеритель LCR может, среди прочего, измерять емкость, сопротивление и индуктивность. Кроме того, он может автоматически распознавать компоненты, напримерampТо есть он может различать разные типы транзисторов, такие как транзисторы NPN или PNP. С устройством особенно легко работать, так как все измерения запускаются нажатием одной кнопки. Благодаря встроенной батарее емкостью 350 мАч измерения можно проводить и в дороге. Аккумулятор заряжается с помощью блока питания на 5 В (приобретается отдельно) и прилагаемого кабеля micro-USB. Кроме того, это измерительное устройство может декодировать инфракрасные сигналы и отображать их в виде формы волны на дисплее.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

РИС 1 ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

ДИАПАЗОН ИЗМЕРЕНИЙ

РИС.2 ДИАПАЗОН ИЗМЕРЕНИЙ

3. СТРУКТУРА

РИСУНОК 3 СТРУКТУРА

РИСУНОК 4 СТРУКТУРА

4. НАЧАЛЬНАЯ ЭКСПЛУАТАЦИЯ

При первом запуске измерительного прибора следует сначала выполнить самотестирование прибора. Для этого необходимо замкнуть разъемы 1, 2 и 3. Это делается следующим образом:

РИС.5 ПЕРВОНАЧАЛЬНАЯ ЭКСПЛУАТАЦИЯ

Теперь нажмите Старт, чтобы выполнить самотестирование. Устройство спросит вас прибл. 22%, чтобы удалить компонент, чтобы можно было успешно завершить самотестирование. Теперь вы можете приступить к измерению ваших компонентов. Вы запускаете процесс измерения с помощью кнопки Start.

РИС.6 ПЕРВОНАЧАЛЬНАЯ ЭКСПЛУАТАЦИЯ

В многофункциональный тестер встроен аккумулятор 3.7 В емкостью 350 мАч. Заряжать его можно с помощью microUSB и блока питания 5 В. Светодиод показывает состояние батареи. Это означает, что он светится красным, когда аккумулятор заряжается, и зеленым, когда аккумулятор полностью заряжен.

Батарея этого измерительного устройства также измеряется во время измерения каждого компонента. Следовательно, остаточный объемtage батареи также отображается во время каждого измерения. Этот остаточный объемtage отображается с Vbat =… V.

Устройство также сообщит вам, когда необходимо снова зарядить аккумулятор.

РИСУНОК 7 M TESRER

Это устройство автоматически выключается через 20 секунд бездействия. Вы также можете выключить его вручную, нажав и удерживая кнопку «Пуск».

5. ИЗМЕРИТЕЛЬНЫЕ КОМПОНЕНТЫ

Этот измерительный прибор может обнаруживать и измерять диоды, Z-диоды, двойные диоды, резисторы, конденсаторы, катушки индуктивности, тиристоры, симисторы, полевые транзисторы, биполярные транзисторы и батареи. Далее вы найдете информацию о том, как измерить компонент и какие значения можно измерить для конкретных компонентов.

Для измерения компонента вы можете использовать слоты 1-3. Только убедитесь, что вы не подключаете два кабеля к одному каналу, то есть к одной и той же цифре. Таким образом, вы должны выбрать любой слот на 1, 2 и 3 для трех подключений. Для измерения объема пробояtage, используйте каналы K и A. Подключите положительный вывод к K, а отрицательный к A. Вы найдете дополнительную информацию в разделе Z-Diode.

Вы можете подключить компонент непосредственно к клеммам устройства или использовать кабель clampпри условии.

РИС. 8 ИЗМЕРИТЕЛЬНЫЕ КОМПОНЕНТЫ

Когда вы подключили компонент, нажмите на рычаг и начните измерение с помощью кнопки запуска.

РИСУНОК 9 M TESRER

Если ни один компонент или неисправный компонент не был подключен, или компонент был подключен неправильно, на экране отображается следующее сообщение.

РИСУНОК 10 M TESRER

FIG 11

FIG 12

FIG 13

FIG 14

FIG 15

Точка в правом верхнем углу указывает, были ли получены данные через инфракрасный порт от пульта дистанционного управления. Таким образом, красный цвет означает получение данных через инфракрасный порт, синий — успешное декодирование. Однако декодировать можно только протокол NEC (который используется многими производителями). Если вы передаете инфракрасный сигнал, не соответствующий этому протоколу, только красная точка в правом верхнем углу дисплея загорается, указывая на то, что инфракрасный сигнал был получен. Эта красная точка загорится синим цветом для инфракрасного сигнала, соответствующего протоколу NEC, и будет декодирована.

6. ЭКСAMPКОМПОНЕНТЫ LE

Конденсатор и светодиод входят в объем поставки; вы можете использовать их для начальных измерений с помощью измерителя LCR, чтобы ознакомиться с прибором.

РИС. 16 EXAMPКОМПОНЕНТЫ LE

7. ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Значок утилизации Наша информация и обязательство по выкупу в соответствии с Законом об электрическом и электронном оборудовании (ElektroG)

Символ на электрических и электронных продуктах:

Эта перечеркнутая корзина означает, что электрические и электронные изделия нельзя выбрасывать вместе с бытовыми отходами. Вы должны сдать свой старый прибор в регистрационный офис. Перед тем, как передать старый прибор, вы должны удалить использованные батареи и аккумуляторы, которые не закрыты устройством.

Варианты возврата:

Как конечный пользователь, вы можете бесплатно сдать при покупке нового устройства свое старое устройство (которое, по сути, имеет те же функции, что и новое). Небольшие устройства, внешние размеры которых не превышают 25 см, могут быть отправлены независимо от покупки нового продукта в обычных бытовых количествах.

Возможность реституции по месту нахождения нашей компании в часы работы: Simac GmbH, Паскальстр. 8, D-47506 Нойкирхен-Флюйн

Возможность реституции поблизости: Отправляем вам посылку ул.amp с помощью которого вы можете бесплатно отправить нам свой старый прибор. Для этой возможности вы должны связаться с нами по электронной почте service@joy-it.net или по телефону.

Информация об упаковке:

Пожалуйста, надежно упакуйте старый прибор во время транспортировки. Если у вас нет подходящего упаковочного материала или вы не хотите использовать свой собственный материал, вы можете связаться с нами, и мы отправим вам соответствующий пакет.

8. ПОДДЕРЖКА

Если какие-либо вопросы остаются открытыми или возникают проблемы после вашей покупки, мы готовы ответить на них по электронной почте, телефону и в системе поддержки билетов.

E-Mail: service@joy-it.net Билетная система: http://support.joy-it.net Телефон: +49 (0) 2845 98469 — 66 (10-17 часов)

Для получения дополнительной информации посетите наш webсайт: www.joy-it.net

www.joy-it.net

SIMAC Electronics GmbH Pascalstr. 8, 47506 Нойкирхен-Флюин

Узнать больше об этом руководстве и скачать PDF:

Документы / Ресурсы

Рекомендации

1 апреля 2021

Устройство для распознавания и тестирования радиодеталей

Введение

Практически во всех цифровых мультиметрах, начиная с самых древних серии D830, имеется в наличии функция проверки биполярных транзисторов с отдельным круглым разъёмом. Однако в том мультиметре, который я приобрел для себя (HoldPeak HP-41B), данный функционал отсутствовал. И такая покупка была осознанной, ибо к моменту приобретения мультиметра я уже знал про такой класс приборов, как тестеры транзисторов. Один из них в конечном итоге пополнил мою домашнюю лабораторию, и о нём сегодня пойдёт речь.

Но перед тем, как перейдём непосредственно к обзору прибора, хотелось бы сказать пару слов о том:

Что такое «тестер транзисторов»?

В учебной литературе про тестеры транзисторов говорится, что это приборы для проверки электрических свойств транзисторов и полупроводниковых диодов. Но в нашем случае проверкой и тестами только транзисторов и диодов дело не обходится. Впрочем, и измерять все параметры транзисторов наш гаджет не сможет, особенно те, которые касаются предельных токов, напряжений и частот.

Помимо измерения параметров радиодеталей и их характеристик, данный класс приборов автоматически распознаёт (не всё, конечно – зависит от конкретной модели и даже прошивки), что за электронные компоненты подключены к нему, их тип и разводку выводов (цоколёвку).

Поход к выбору модели

Сразу оговорюсь, что это сугубо мой личный подход со своими критериями по параметрам и характеристикам, что в итоге привело к покупке именно того прибора, который и будет обозреваться.

Мои требования к будущему тестеру транзисторов вылились всего в три пункта:

  • Доступность по цене;
  • Функциональность;
  • Готовность к использованию из коробки.

Первый пункт сразу отрезал путь поиска в направлении профессиональных приборов, а последний заставил изучать ассортимент предложений на AliExpress, т.к. на рынке имеется множество подобных приборов, выполненных в виде готового конструктора (чаще – только в виде платы), для которого нужно ещё подобрать соответствующий корпус. Если вам не чужда работа с ножовкой или есть 3D принтер, то можете смело брать тестеры транзисторов в варианте «Только плата». На худой конец можно выбрать готовый корпус для таких плат.

Но так как я решил не заморачиваться с бескорпусными тестерами транзисторов, то мой список отбора сразу сократился до следующих моделей:

  • BSIDE ESR02 PRO;
  • Различные коробочные версии тестеров серии «М328» с монохромными и цветными дисплеями ;
  • Тестеры серии TC1 (LCR-TC1);
  • Тестеры серии T5 (LCR-T5);
  • Тестеры серии T7 (LCR-T7 и T7-H).

Кратко рассмотрим возможности каждого из тестеров, а также их плюсы и минусы:

BSIDE ESR02 PRO

Данный прибор выделяется своим назначением – тестирование и измерение параметров мелких SMD деталей, для чего на его корпусе разработчики расположили несколько контактных площадок различной формы. В наличии также специальные контактные площадки для тестирования выводных деталей. Среди тестируемых деталей значатся диоды (в т.ч. составные), биполярные и полевые транзисторы, тиристоры симисторы, резисторы, конденсаторы и индуктивности. Кроме того, y некоторых продавцов указана возможность для данной модели автоматически определять стабилитроны с напряжением стабилизации не более 4,5 вольт.

Плюсы:

  • Качественный корпус, на задней панели которого присутствует таблица допустимых значений ESR (Equivalent Series Resistance – эквивалентное последовательное сопротивление) конденсаторов в зависимости от их ёмкости и напряжения;
  • Возможность питания от внешнего 12-вольтового адаптера в дополнение к автономной работе от батареи напряжением 9 вольт (типа «Крона»);
  • Наличие места для размещения (не тестирования) мелких деталей;
  • Площадка для разрядки конденсаторов;
  • Информативная разметка контактных площадок;
  • SMD щупы в комплекте;
  • Подсветка дисплея.

Минусы:

  • Малое разрешение экрана, которое накладывает ограничение на количественное и качественное отображение информации.

Стоимость на момент написания обзора (минимальное предложение со всеми скидками от продавца без учета купонов): 21,2$.

Тестеры серии «М328»

Данная серия тестеров транзисторов по функциональности практически ничем не отличается от предыдущей, за исключением того факта, что дисплей имеет большее разрешение, а информация может выводиться в цвете (для моделей с цветным дисплеем). В отличие от функционала, качество сборки у M328 сильно «гуляет» от модели к модели, и есть большой шанс приобрести неработоспособный прибор.

Плюсы:

  • Большой информативный дисплей разрешением 128х160 пикселей (модели с монохромным дисплеем, как правило, с меньшим разрешением);
  • Большое количество прошивок, которые подходят от одноименных бескорпусных моделей (например, серия FISH8840) и расширяют функционал прибора.

Минусы:

  • Некоторые экземпляры «болеют» повышенным энергопотреблением;
  • ZIF разъём плохо держится в разъёме самого тестера;
  • Есть большой шанс приобрести прибор с низкокачественной сборкой.

Стоимость на момент написания обзора (без учета купонов): 13,9$.

Тестеры серии TC1, T5, T6 и T7

Данные тестеры внутрисхемно, внешне и функционально мало чем отличаются друг от друга, в том числе и по части интерфейса. Основное отличие между ними заключается в том, что модели TC1 и T7 оснащаются цветным дисплеем разрешением 128х160 пикселей (T7-H – 128х128), а T5 и T6 – монохромным разрешением 128х64 пикселей.

При этом модель T7 отличается от TC1, согласно документации от продавца, лишь небольшим приростом скорости в работе, а также тем, что у TC1 дисплей чуть-чуть больше. В свою очередь модель, T7-H выделяется значительно большим приростом производительности при снижении разрешения дисплея и напряжения для тестирования стабилитронов (20 вольт вместо 30 вольт у остальных моделей серии).

Модели T5 и T6 с монохромными дисплеями имеют тот же функционал, что и серия T7, за одним исключением: модель T5 не имеет отдельной площадки контактов для тестирования стабилитронов с напряжением стабилизации свыше 4,5 вольт. Тем не менее, исправные стабилитроны с напряжением стабилизации до 4,5 вольт определяются T5 автоматически (как и все модели серии).

В дополнение к стандартному набору проверки и тестирования диодов, стабилитронов, транзисторов (биполярных и полевых), тиристоров с симисторами, резисторов, конденсаторов и индуктивностей, в рассматриваемой линейке тестеров имеется возможность получения формы сигнала и его цифрового кода с ИК-пультов дистанционного управления, совместимых со стандартом Hitachi. Кроме того, все модели серии оснащены встроенным аккумулятором, который может заряжаться от любого зарядного устройства с microUSB-разъёмом.

Стоимость мультиметров с учетом стоимости доставки на момент написания обзора (без учета купонов):

  • TC1: 13,88$
  • T5: 25,8$
  • T6: 31,96$
  • T7: 13,82$
  • T7-H: 16,13$

Плюсы:

  • Высокая скорость работы;
  • Более продуманный пользовательский интерфейс, который в полной мере задействует возможности цветного дисплея;
  • Возможность проверять стабилитроны с повышенным напряжением стабилизации;
  • Тестирование ИК-пультов (сомнительно);
  • Компактные размеры;
  • Питание от встроенного аккумулятора.

Минусы:

  • Пока нет возможности задействовать в сторонних прошивках функционал по проверке стабилитронов с повышенным напряжением стабилизации (>4,5 В) и возможности ИК-датчика;
  • После «заливки» в прибор сторонней прошивки нет возможности сделать откат на родную прошивку (кроме модели TC1).

Мой выбор

Из приведенных тестеров транзисторов практически сразу отпали модели LCR-T5 и LCR-T6 из-за своей высокой цены и небольшого предложения. Далее аналогичная участь ждала всю 328-ю серию из-за наличия больших проблем с качеством продукции. Модель BSIDE ESR02 PRO также уступила оставшимся моделям серии T7 и TC1 – в первую очередь из-за своей относительно высокой цены при чуть меньших функциональных возможностях, даже несмотря на более качественное исполнение. К тому же T7 и TC1 питались от аккумуляторов и имели цветные дисплеи большего разрешения.

Из оставшейся тройки приборов первой выбыла модель T7-H: при мало что значащей и не видимой на глаз повышенной скорости работы, она имела дисплей меньшего разрешения, а также обладала более узким диапазоном измеряемых стабилитронов (до 20 вольт вместо 30).

Если бы я делал покупки сегодня, а не месяц назад, то в итоге в обзоре, возможно, оказалась бы совсем иная модель тестера транзисторов. На момент покупки она стоила почти на 5$ дешевле остальных рассматриваемых моделей, и поэтому мой выбор пал на модель LCR-T7. Однако сейчас она стоит почти так же, как и TC1, которая имеет возможность отката на оригинальную прошивку. Но я не собирался проводить эксперименты по перепрошивке приборов, и поэтому мой выбор был в пользу более дешевой модели, как это ни банально.

Так что дальше нас ждёт небольшой:

Обзор тестера транзисторов LCR-T7

К моменту написания обзора по тестеру транзисторов как раз вовремя приехала из Китая паяльная станция на жалах типа T12, с помощью которой по-быстрому отпаял со сгоревшего блока питания от компьютера несколько радиодеталей, которые участвовали в испытаниях тестера:

Внешний вид

Прибор приехал в запаянном антистатическом пакете:

Внутри этого пакета лежали сам прибор, три щупа-зажима типа «крючок» с разъёмом DuPont, а также ещё один пакет с прочими аксессуарами:

Во втором антистатическом пакете лежали короткий microUSB-кабель для зарядки встроенного аккумулятора, трехконтактная перемычка для проведения самотестирования прибора, маленький электролитический конденсатор на 25 вольт и ёмкостью 10 микрофарад, а также красный светодиод для возможности перейти к проверке тестера прямо из коробки:

На передней панели прибора находятся дисплей, на котором отображается вся информация о тестируемых деталях, всего одна кнопка, с помощью которой производится всё управление, ZIF-разъём, в который вставляются проверяемые детали или щупы в случае, если детали слишком крупные или очень мелкие. А между кнопкой и разъёмом находится небольшое круглое окошко для ИК-фотодиода, с помощью которого LCR-T7 определяет форму сигнала с пультов дистанционного управления и их цифровые коды.

Сам ZIF-разъём имеет несколько дублирующих контактных площадок, пронумерованных 1-2-3, а также отдельный блок контактов в нижнем левом углу для тестирования стабилитронов с повышенным напряжением стабилизации (>4,5 В) и обозначением КАА (катод-анод-анод). Следует учитывать, что в этом блоке «распиновка» стабилитронов не определяется автоматически и их нужно подключать так, как указано в обозначении контактов.

Снизу корпуса прибора находится microUSB-разъём, через который подзаряжается прибор, и светодиодный индикатор состояния зарядки (красный – идёт процесс разрядки, а зелёный сигнализирует об окончании этого процесса):

Первое включение

Короткое нажатие на единственную кнопку прибора запустит процесс определения и тестирования вставленной в него радиодетали:

На экране выводятся сообщение о том, что проводится процесс тестирования, информация о напряжении встроенного аккумулятора и подсказка с распиновкой ZIF-разъёма. По окончании тестирования, если в прибор не была вставлена радиодеталь или же она оказалась неисправной, а также если она не поддерживается для распознавания, получим такое сообщение:

Через 20 секунд или меньше, в зависимости от заводской настройки прибора, он выключится автоматически. Его можно также выключить вручную – длительным нажатием кнопки. Короткое нажатие на кнопку запустит повторный тест.

Перед началом тестирования радиодеталей тестер транзисторов рекомендуется откалибровать. Делается это очень просто: для этого необходимо вставить в выключенный тестер тройную перемычку из комплекта поставки, замкнув все три контакта 1-2-3 (в любом месте), а затем нажать на кнопку «Start». После этого запустится самодиагностика прибора:

Через некоторое время прибор попросит избавиться от перемычки и продолжит процесс самотестирования, который завершится выводом информации о версии микропрограммного обеспечения прибора:

После этого уже можно приступить непосредственно к:

Проверка радиодеталей

Для проверки радиодеталей их выводы необходимо подключить к прибору, вставив их непосредственно в ZIF-разъём или с помощью щупов-зажимов из комплекта. Выводы нужно подключать так, чтобы они попали в контактные площадки под разными номерами, т.е. трехвыводные детали обязательно должны быть на контактных площадках под номерами 1-2-3, тогда как двухвыводные – в любых двух из трёх.

Обычный резистор на 51 Ом с 5-процентным допустимым отклонением от номинала:

Прибор правильно определил, что вставленная деталь – это резистор с сопротивлением 50 Ом (отклонение 2%, что в пределах нормы), который был подключен к контактным площадкам прибора под номерами 1 и 2.

Трехвыводные переменные резисторы тоже можно проверить:

Определение обычных конденсаторов и их ёмкости:

При тесте электролитических конденсаторов, помимо их ёмкости, определяется эквивалентное последовательное сопротивление (ESR) и нестандартный параметр Vloss (падение напряжения, выраженное в процентах):

Хотелось бы немного пояснить по поводу эквивалентного последовательного сопротивления, вернее, наличия великого множества таблиц допустимых значений ESR для электролитических конденсаторов, которые присутствуют на просторах Всемирной паутины. Дело в том, что производители в спецификациях на каждый тип конденсаторов указывают свои допустимые величины этого параметра. Поэтому одно и то же значение ESR для конденсаторов одинаковой ёмкости и напряжения, но различного типа (напр., алюминиевого и танталового), будет указывать на то, что танталовый конденсатор более низкого качества, (вероятность того, что алюминиевый конденсатор получился сравнимым по качеству с танталовым, очень низкая).

Отсюда вывод – ищите правильные таблицы для своих конденсаторов, чтобы не отправить на свалку исправную деталь.

А вот что касается отображаемого параметра Vloss, то тут, как правило, имеется в виду падение напряжения во время измерения ёмкости конденсатора, выраженное в процентах. И чем оно ниже, тем лучше.

Вот, например, другой электролитический конденсатор с очень маленьким значением ECR, но с Vloss вдвое большим, чем у предыдущего экземпляра:

Обычный диод:

Тестер автоматически определяет, что это диод, к каким контактам подключены анод и катод, а также выводит его параметры: напряжение падения (Uf=703 мВ), ёмкость p-n перехода (C=4 пФ) и ток утечки (Ir=31 нА).

При тестировании диодов Шоттки прибор не показывает ёмкость (у таких диодов нет привычного p-n перехода):

Прибор отлично справляется с определением сдвоенных диодов, показывая для каждого из диодов напряжение падения:

Микросхема стабилизатора напряжения TL431 также определяется как сдвоенный диод:

Обычные биполярные транзисторы:

Тут мы видим:

  • Тип транзистора (BJT Bipolar Junction Transistor, т.е. биполярный транзистор);
  • Проводимость (PNP или NPN);
  • К каким контактам подключены база (B), коллектор (C) и эмиттер (E);
  • Коэффициент усиления по току в схеме с общим эмиттером (hFE);
  • Напряжение перехода база-эмиттер (Ube);
  • Ток коллектора, при котором производилось измерение (Ic).

Полевой транзистор:

Тут отображаются:

  • Тип транзистора (MOS, он же MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor, металл-оксидный-полупроводниковый транзистор с полевым эффектом);
  • Тип MOSFET транзистора (N-E: МОП транзистор с индуцированным N-каналом);
  • К каким контактам подключены исток (Source), сток (Drain) и затвор (Gate);
  • Vt – напряжение открывания перехода;
  • Cg – ёмкость затвора;
  • Rds – прямое сопротивление открытого канала d (сток) – s (исток);
  • Uf – напряжение падения на защитном (паразитном) диоде и схема его включения.

Мощные симисторы и тиристоры прибор определяет как резисторы:

Хотя такое поведение может быть и с неисправными полупроводниками.

С маломощными симисторами ситуация с их определением вполне нормальная:

Стабилитронов в моей коллекции не оказалось, поэтому для проверки выделенной контактной площадки для стабилитронов, в которой они проверяются, я использовал обычные диоды, которые также могут выступать в этой роли (если ток небольшой):

Исправные дроссели показывают индуктивность и сопротивление:

Несправный дроссель, который имеет большее количество витков и больший диаметр сердечника, показывает на приборе мизерное значение индуктивности и малое сопротивление, что указывает на наличие межвиткового замыкания в нём:

Справляется прибор и с определением обычных батареек, но долго (как с конденсаторами):

И напоследок – неоднозначная функция проверки формы сигнала с пультов дистанционного управления и получения цифрового кода:

Здесь красный кружок в верхнем правом углу говорит о том, что прибор получает сигнал по ИК-каналу. Ниже – форма сигнала и его цифровой код для значения UserCode (он же код производителя – для одного пульта ДУ не меняется), а чуть ниже – аналогичные данные для DataCode, управляющего кода с клавиш пульта управления. Единственное место, где это может пригодиться – универсальные пульты управления, которые программируются по коду производителя с неизвестной маркой.

Вывод

Хороший прибор в качестве дополнения к мультиметру, который, однако, не заменяет его. Может сильно выручить в ситуациях, когда у детали стёрта маркировка и ты не знаешь не то что распиновку, а даже вид радиодетали. С ним легко подобрать детали с близкими характеристиками, особенно если деталей очень много. Но стоит учитывать, что полагаться на точность показаний таких приборов не стоит.

Какой из приборов себе брать – каждый решает сам исходя из своих требований. Тем более что такой прибор можно собрать и самому.

Ссылки по теме

  • Лаборатория радиолюбителя с нуля. Часть 1. Муки выбора мультиметра
  • Лаборатория радиолюбителя с нуля. Часть 2. Обзор таинственного мультиметра
  • Мелочи жизни радиолюбителя

1 апреля 2021

Устройство для распознавания и тестирования радиодеталей

Введение

Практически во всех цифровых мультиметрах, начиная с самых древних серии D830, имеется в наличии функция проверки биполярных транзисторов с отдельным круглым разъёмом. Однако в том мультиметре, который я приобрел для себя (HoldPeak HP-41B), данный функционал отсутствовал. И такая покупка была осознанной, ибо к моменту приобретения мультиметра я уже знал про такой класс приборов, как тестеры транзисторов. Один из них в конечном итоге пополнил мою домашнюю лабораторию, и о нём сегодня пойдёт речь.

Но перед тем, как перейдём непосредственно к обзору прибора, хотелось бы сказать пару слов о том:

Что такое «тестер транзисторов»?

В учебной литературе про тестеры транзисторов говорится, что это приборы для проверки электрических свойств транзисторов и полупроводниковых диодов. Но в нашем случае проверкой и тестами только транзисторов и диодов дело не обходится. Впрочем, и измерять все параметры транзисторов наш гаджет не сможет, особенно те, которые касаются предельных токов, напряжений и частот.

Помимо измерения параметров радиодеталей и их характеристик, данный класс приборов автоматически распознаёт (не всё, конечно – зависит от конкретной модели и даже прошивки), что за электронные компоненты подключены к нему, их тип и разводку выводов (цоколёвку).

Поход к выбору модели

Сразу оговорюсь, что это сугубо мой личный подход со своими критериями по параметрам и характеристикам, что в итоге привело к покупке именно того прибора, который и будет обозреваться.

Мои требования к будущему тестеру транзисторов вылились всего в три пункта:

  • Доступность по цене;
  • Функциональность;
  • Готовность к использованию из коробки.

Первый пункт сразу отрезал путь поиска в направлении профессиональных приборов, а последний заставил изучать ассортимент предложений на AliExpress, т.к. на рынке имеется множество подобных приборов, выполненных в виде готового конструктора (чаще – только в виде платы), для которого нужно ещё подобрать соответствующий корпус. Если вам не чужда работа с ножовкой или есть 3D принтер, то можете смело брать тестеры транзисторов в варианте «Только плата». На худой конец можно выбрать готовый корпус для таких плат.

Но так как я решил не заморачиваться с бескорпусными тестерами транзисторов, то мой список отбора сразу сократился до следующих моделей:

  • BSIDE ESR02 PRO;
  • Различные коробочные версии тестеров серии «М328» с монохромными и цветными дисплеями ;
  • Тестеры серии TC1 (LCR-TC1);
  • Тестеры серии T5 (LCR-T5);
  • Тестеры серии T7 (LCR-T7 и T7-H).

Кратко рассмотрим возможности каждого из тестеров, а также их плюсы и минусы:

BSIDE ESR02 PRO

Данный прибор выделяется своим назначением – тестирование и измерение параметров мелких SMD деталей, для чего на его корпусе разработчики расположили несколько контактных площадок различной формы. В наличии также специальные контактные площадки для тестирования выводных деталей. Среди тестируемых деталей значатся диоды (в т.ч. составные), биполярные и полевые транзисторы, тиристоры симисторы, резисторы, конденсаторы и индуктивности. Кроме того, y некоторых продавцов указана возможность для данной модели автоматически определять стабилитроны с напряжением стабилизации не более 4,5 вольт.

Плюсы:

  • Качественный корпус, на задней панели которого присутствует таблица допустимых значений ESR (Equivalent Series Resistance – эквивалентное последовательное сопротивление) конденсаторов в зависимости от их ёмкости и напряжения;
  • Возможность питания от внешнего 12-вольтового адаптера в дополнение к автономной работе от батареи напряжением 9 вольт (типа «Крона»);
  • Наличие места для размещения (не тестирования) мелких деталей;
  • Площадка для разрядки конденсаторов;
  • Информативная разметка контактных площадок;
  • SMD щупы в комплекте;
  • Подсветка дисплея.

Минусы:

  • Малое разрешение экрана, которое накладывает ограничение на количественное и качественное отображение информации.

Стоимость на момент написания обзора (минимальное предложение со всеми скидками от продавца без учета купонов): 21,2$.

Тестеры серии «М328»

Данная серия тестеров транзисторов по функциональности практически ничем не отличается от предыдущей, за исключением того факта, что дисплей имеет большее разрешение, а информация может выводиться в цвете (для моделей с цветным дисплеем). В отличие от функционала, качество сборки у M328 сильно «гуляет» от модели к модели, и есть большой шанс приобрести неработоспособный прибор.

Плюсы:

  • Большой информативный дисплей разрешением 128х160 пикселей (модели с монохромным дисплеем, как правило, с меньшим разрешением);
  • Большое количество прошивок, которые подходят от одноименных бескорпусных моделей (например, серия FISH8840) и расширяют функционал прибора.

Минусы:

  • Некоторые экземпляры «болеют» повышенным энергопотреблением;
  • ZIF разъём плохо держится в разъёме самого тестера;
  • Есть большой шанс приобрести прибор с низкокачественной сборкой.

Стоимость на момент написания обзора (без учета купонов): 13,9$.

Тестеры серии TC1, T5, T6 и T7

Данные тестеры внутрисхемно, внешне и функционально мало чем отличаются друг от друга, в том числе и по части интерфейса. Основное отличие между ними заключается в том, что модели TC1 и T7 оснащаются цветным дисплеем разрешением 128х160 пикселей (T7-H – 128х128), а T5 и T6 – монохромным разрешением 128х64 пикселей.

При этом модель T7 отличается от TC1, согласно документации от продавца, лишь небольшим приростом скорости в работе, а также тем, что у TC1 дисплей чуть-чуть больше. В свою очередь модель, T7-H выделяется значительно большим приростом производительности при снижении разрешения дисплея и напряжения для тестирования стабилитронов (20 вольт вместо 30 вольт у остальных моделей серии).

Модели T5 и T6 с монохромными дисплеями имеют тот же функционал, что и серия T7, за одним исключением: модель T5 не имеет отдельной площадки контактов для тестирования стабилитронов с напряжением стабилизации свыше 4,5 вольт. Тем не менее, исправные стабилитроны с напряжением стабилизации до 4,5 вольт определяются T5 автоматически (как и все модели серии).

В дополнение к стандартному набору проверки и тестирования диодов, стабилитронов, транзисторов (биполярных и полевых), тиристоров с симисторами, резисторов, конденсаторов и индуктивностей, в рассматриваемой линейке тестеров имеется возможность получения формы сигнала и его цифрового кода с ИК-пультов дистанционного управления, совместимых со стандартом Hitachi. Кроме того, все модели серии оснащены встроенным аккумулятором, который может заряжаться от любого зарядного устройства с microUSB-разъёмом.

Стоимость мультиметров с учетом стоимости доставки на момент написания обзора (без учета купонов):

  • TC1: 13,88$
  • T5: 25,8$
  • T6: 31,96$
  • T7: 13,82$
  • T7-H: 16,13$

Плюсы:

  • Высокая скорость работы;
  • Более продуманный пользовательский интерфейс, который в полной мере задействует возможности цветного дисплея;
  • Возможность проверять стабилитроны с повышенным напряжением стабилизации;
  • Тестирование ИК-пультов (сомнительно);
  • Компактные размеры;
  • Питание от встроенного аккумулятора.

Минусы:

  • Пока нет возможности задействовать в сторонних прошивках функционал по проверке стабилитронов с повышенным напряжением стабилизации (>4,5 В) и возможности ИК-датчика;
  • После «заливки» в прибор сторонней прошивки нет возможности сделать откат на родную прошивку (кроме модели TC1).

Мой выбор

Из приведенных тестеров транзисторов практически сразу отпали модели LCR-T5 и LCR-T6 из-за своей высокой цены и небольшого предложения. Далее аналогичная участь ждала всю 328-ю серию из-за наличия больших проблем с качеством продукции. Модель BSIDE ESR02 PRO также уступила оставшимся моделям серии T7 и TC1 – в первую очередь из-за своей относительно высокой цены при чуть меньших функциональных возможностях, даже несмотря на более качественное исполнение. К тому же T7 и TC1 питались от аккумуляторов и имели цветные дисплеи большего разрешения.

Из оставшейся тройки приборов первой выбыла модель T7-H: при мало что значащей и не видимой на глаз повышенной скорости работы, она имела дисплей меньшего разрешения, а также обладала более узким диапазоном измеряемых стабилитронов (до 20 вольт вместо 30).

Если бы я делал покупки сегодня, а не месяц назад, то в итоге в обзоре, возможно, оказалась бы совсем иная модель тестера транзисторов. На момент покупки она стоила почти на 5$ дешевле остальных рассматриваемых моделей, и поэтому мой выбор пал на модель LCR-T7. Однако сейчас она стоит почти так же, как и TC1, которая имеет возможность отката на оригинальную прошивку. Но я не собирался проводить эксперименты по перепрошивке приборов, и поэтому мой выбор был в пользу более дешевой модели, как это ни банально.

Так что дальше нас ждёт небольшой:

Обзор тестера транзисторов LCR-T7

К моменту написания обзора по тестеру транзисторов как раз вовремя приехала из Китая паяльная станция на жалах типа T12, с помощью которой по-быстрому отпаял со сгоревшего блока питания от компьютера несколько радиодеталей, которые участвовали в испытаниях тестера:

Внешний вид

Прибор приехал в запаянном антистатическом пакете:

Внутри этого пакета лежали сам прибор, три щупа-зажима типа «крючок» с разъёмом DuPont, а также ещё один пакет с прочими аксессуарами:

Во втором антистатическом пакете лежали короткий microUSB-кабель для зарядки встроенного аккумулятора, трехконтактная перемычка для проведения самотестирования прибора, маленький электролитический конденсатор на 25 вольт и ёмкостью 10 микрофарад, а также красный светодиод для возможности перейти к проверке тестера прямо из коробки:

На передней панели прибора находятся дисплей, на котором отображается вся информация о тестируемых деталях, всего одна кнопка, с помощью которой производится всё управление, ZIF-разъём, в который вставляются проверяемые детали или щупы в случае, если детали слишком крупные или очень мелкие. А между кнопкой и разъёмом находится небольшое круглое окошко для ИК-фотодиода, с помощью которого LCR-T7 определяет форму сигнала с пультов дистанционного управления и их цифровые коды.

Сам ZIF-разъём имеет несколько дублирующих контактных площадок, пронумерованных 1-2-3, а также отдельный блок контактов в нижнем левом углу для тестирования стабилитронов с повышенным напряжением стабилизации (>4,5 В) и обозначением КАА (катод-анод-анод). Следует учитывать, что в этом блоке «распиновка» стабилитронов не определяется автоматически и их нужно подключать так, как указано в обозначении контактов.

Снизу корпуса прибора находится microUSB-разъём, через который подзаряжается прибор, и светодиодный индикатор состояния зарядки (красный – идёт процесс разрядки, а зелёный сигнализирует об окончании этого процесса):

Первое включение

Короткое нажатие на единственную кнопку прибора запустит процесс определения и тестирования вставленной в него радиодетали:

На экране выводятся сообщение о том, что проводится процесс тестирования, информация о напряжении встроенного аккумулятора и подсказка с распиновкой ZIF-разъёма. По окончании тестирования, если в прибор не была вставлена радиодеталь или же она оказалась неисправной, а также если она не поддерживается для распознавания, получим такое сообщение:

Через 20 секунд или меньше, в зависимости от заводской настройки прибора, он выключится автоматически. Его можно также выключить вручную – длительным нажатием кнопки. Короткое нажатие на кнопку запустит повторный тест.

Перед началом тестирования радиодеталей тестер транзисторов рекомендуется откалибровать. Делается это очень просто: для этого необходимо вставить в выключенный тестер тройную перемычку из комплекта поставки, замкнув все три контакта 1-2-3 (в любом месте), а затем нажать на кнопку «Start». После этого запустится самодиагностика прибора:

Через некоторое время прибор попросит избавиться от перемычки и продолжит процесс самотестирования, который завершится выводом информации о версии микропрограммного обеспечения прибора:

После этого уже можно приступить непосредственно к:

Проверка радиодеталей

Для проверки радиодеталей их выводы необходимо подключить к прибору, вставив их непосредственно в ZIF-разъём или с помощью щупов-зажимов из комплекта. Выводы нужно подключать так, чтобы они попали в контактные площадки под разными номерами, т.е. трехвыводные детали обязательно должны быть на контактных площадках под номерами 1-2-3, тогда как двухвыводные – в любых двух из трёх.

Обычный резистор на 51 Ом с 5-процентным допустимым отклонением от номинала:

Прибор правильно определил, что вставленная деталь – это резистор с сопротивлением 50 Ом (отклонение 2%, что в пределах нормы), который был подключен к контактным площадкам прибора под номерами 1 и 2.

Трехвыводные переменные резисторы тоже можно проверить:

Определение обычных конденсаторов и их ёмкости:

При тесте электролитических конденсаторов, помимо их ёмкости, определяется эквивалентное последовательное сопротивление (ESR) и нестандартный параметр Vloss (падение напряжения, выраженное в процентах):

Хотелось бы немного пояснить по поводу эквивалентного последовательного сопротивления, вернее, наличия великого множества таблиц допустимых значений ESR для электролитических конденсаторов, которые присутствуют на просторах Всемирной паутины. Дело в том, что производители в спецификациях на каждый тип конденсаторов указывают свои допустимые величины этого параметра. Поэтому одно и то же значение ESR для конденсаторов одинаковой ёмкости и напряжения, но различного типа (напр., алюминиевого и танталового), будет указывать на то, что танталовый конденсатор более низкого качества, (вероятность того, что алюминиевый конденсатор получился сравнимым по качеству с танталовым, очень низкая).

Отсюда вывод – ищите правильные таблицы для своих конденсаторов, чтобы не отправить на свалку исправную деталь.

А вот что касается отображаемого параметра Vloss, то тут, как правило, имеется в виду падение напряжения во время измерения ёмкости конденсатора, выраженное в процентах. И чем оно ниже, тем лучше.

Вот, например, другой электролитический конденсатор с очень маленьким значением ECR, но с Vloss вдвое большим, чем у предыдущего экземпляра:

Обычный диод:

Тестер автоматически определяет, что это диод, к каким контактам подключены анод и катод, а также выводит его параметры: напряжение падения (Uf=703 мВ), ёмкость p-n перехода (C=4 пФ) и ток утечки (Ir=31 нА).

При тестировании диодов Шоттки прибор не показывает ёмкость (у таких диодов нет привычного p-n перехода):

Прибор отлично справляется с определением сдвоенных диодов, показывая для каждого из диодов напряжение падения:

Микросхема стабилизатора напряжения TL431 также определяется как сдвоенный диод:

Обычные биполярные транзисторы:

Тут мы видим:

  • Тип транзистора (BJT Bipolar Junction Transistor, т.е. биполярный транзистор);
  • Проводимость (PNP или NPN);
  • К каким контактам подключены база (B), коллектор (C) и эмиттер (E);
  • Коэффициент усиления по току в схеме с общим эмиттером (hFE);
  • Напряжение перехода база-эмиттер (Ube);
  • Ток коллектора, при котором производилось измерение (Ic).

Полевой транзистор:

Тут отображаются:

  • Тип транзистора (MOS, он же MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor, металл-оксидный-полупроводниковый транзистор с полевым эффектом);
  • Тип MOSFET транзистора (N-E: МОП транзистор с индуцированным N-каналом);
  • К каким контактам подключены исток (Source), сток (Drain) и затвор (Gate);
  • Vt – напряжение открывания перехода;
  • Cg – ёмкость затвора;
  • Rds – прямое сопротивление открытого канала d (сток) – s (исток);
  • Uf – напряжение падения на защитном (паразитном) диоде и схема его включения.

Мощные симисторы и тиристоры прибор определяет как резисторы:

Хотя такое поведение может быть и с неисправными полупроводниками.

С маломощными симисторами ситуация с их определением вполне нормальная:

Стабилитронов в моей коллекции не оказалось, поэтому для проверки выделенной контактной площадки для стабилитронов, в которой они проверяются, я использовал обычные диоды, которые также могут выступать в этой роли (если ток небольшой):

Исправные дроссели показывают индуктивность и сопротивление:

Несправный дроссель, который имеет большее количество витков и больший диаметр сердечника, показывает на приборе мизерное значение индуктивности и малое сопротивление, что указывает на наличие межвиткового замыкания в нём:

Справляется прибор и с определением обычных батареек, но долго (как с конденсаторами):

И напоследок – неоднозначная функция проверки формы сигнала с пультов дистанционного управления и получения цифрового кода:

Здесь красный кружок в верхнем правом углу говорит о том, что прибор получает сигнал по ИК-каналу. Ниже – форма сигнала и его цифровой код для значения UserCode (он же код производителя – для одного пульта ДУ не меняется), а чуть ниже – аналогичные данные для DataCode, управляющего кода с клавиш пульта управления. Единственное место, где это может пригодиться – универсальные пульты управления, которые программируются по коду производителя с неизвестной маркой.

Вывод

Хороший прибор в качестве дополнения к мультиметру, который, однако, не заменяет его. Может сильно выручить в ситуациях, когда у детали стёрта маркировка и ты не знаешь не то что распиновку, а даже вид радиодетали. С ним легко подобрать детали с близкими характеристиками, особенно если деталей очень много. Но стоит учитывать, что полагаться на точность показаний таких приборов не стоит.

Какой из приборов себе брать – каждый решает сам исходя из своих требований. Тем более что такой прибор можно собрать и самому.

Ссылки по теме

  • Лаборатория радиолюбителя с нуля. Часть 1. Муки выбора мультиметра
  • Лаборатория радиолюбителя с нуля. Часть 2. Обзор таинственного мультиметра
  • Мелочи жизни радиолюбителя

логотип joy-it

JOY-iT JT-LCR-T7 Руководство пользователя многофункционального тестера

JOY-iT JT-LCR-T7 Многофункциональный тестер

1. ОСНОВНАЯ ИНФОРМАЦИЯ

Уважаемый покупатель, благодарим Вас за выбор нашего продукта. Далее мы покажем вам, как использовать это устройство. Если вы столкнетесь с неожиданными проблемами во время использования, не стесняйтесь обращаться к нам.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Этот измеритель LCR предлагает широкий спектр функций по невысокой цене. Измеритель LCR может, среди прочего, измерять емкость, сопротивление и индуктивность. Кроме того, он может автоматически распознавать компоненты, напримерampТо есть он может различать разные типы транзисторов, такие как транзисторы NPN или PNP. С устройством особенно легко работать, так как все измерения запускаются нажатием одной кнопки. Благодаря встроенной батарее емкостью 350 мАч измерения можно проводить и в дороге. Аккумулятор заряжается с помощью блока питания на 5 В (приобретается отдельно) и прилагаемого кабеля micro-USB. Кроме того, это измерительное устройство может декодировать инфракрасные сигналы и отображать их в виде формы волны на дисплее.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

РИС 1 ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

ДИАПАЗОН ИЗМЕРЕНИЙ

РИС.2 ДИАПАЗОН ИЗМЕРЕНИЙ

3. СТРУКТУРА

РИСУНОК 3 СТРУКТУРА

РИСУНОК 4 СТРУКТУРА

4. НАЧАЛЬНАЯ ЭКСПЛУАТАЦИЯ

При первом запуске измерительного прибора следует сначала выполнить самотестирование прибора. Для этого необходимо замкнуть разъемы 1, 2 и 3. Это делается следующим образом:

РИС.5 ПЕРВОНАЧАЛЬНАЯ ЭКСПЛУАТАЦИЯ

Теперь нажмите Старт, чтобы выполнить самотестирование. Устройство спросит вас прибл. 22%, чтобы удалить компонент, чтобы можно было успешно завершить самотестирование. Теперь вы можете приступить к измерению ваших компонентов. Вы запускаете процесс измерения с помощью кнопки Start.

РИС.6 ПЕРВОНАЧАЛЬНАЯ ЭКСПЛУАТАЦИЯ

В многофункциональный тестер встроен аккумулятор 3.7 В емкостью 350 мАч. Заряжать его можно с помощью microUSB и блока питания 5 В. Светодиод показывает состояние батареи. Это означает, что он светится красным, когда аккумулятор заряжается, и зеленым, когда аккумулятор полностью заряжен.

Батарея этого измерительного устройства также измеряется во время измерения каждого компонента. Следовательно, остаточный объемtage батареи также отображается во время каждого измерения. Этот остаточный объемtage отображается с Vbat =… V.

Устройство также сообщит вам, когда необходимо снова зарядить аккумулятор.

РИСУНОК 7 M TESRER

Это устройство автоматически выключается через 20 секунд бездействия. Вы также можете выключить его вручную, нажав и удерживая кнопку «Пуск».

5. ИЗМЕРИТЕЛЬНЫЕ КОМПОНЕНТЫ

Этот измерительный прибор может обнаруживать и измерять диоды, Z-диоды, двойные диоды, резисторы, конденсаторы, катушки индуктивности, тиристоры, симисторы, полевые транзисторы, биполярные транзисторы и батареи. Далее вы найдете информацию о том, как измерить компонент и какие значения можно измерить для конкретных компонентов.

Для измерения компонента вы можете использовать слоты 1-3. Только убедитесь, что вы не подключаете два кабеля к одному каналу, то есть к одной и той же цифре. Таким образом, вы должны выбрать любой слот на 1, 2 и 3 для трех подключений. Для измерения объема пробояtage, используйте каналы K и A. Подключите положительный вывод к K, а отрицательный к A. Вы найдете дополнительную информацию в разделе Z-Diode.

Вы можете подключить компонент непосредственно к клеммам устройства или использовать кабель clampпри условии.

РИС. 8 ИЗМЕРИТЕЛЬНЫЕ КОМПОНЕНТЫ

Когда вы подключили компонент, нажмите на рычаг и начните измерение с помощью кнопки запуска.

РИСУНОК 9 M TESRER

Если ни один компонент или неисправный компонент не был подключен, или компонент был подключен неправильно, на экране отображается следующее сообщение.

РИСУНОК 10 M TESRER

FIG 11

FIG 12

FIG 13

FIG 14

FIG 15

Точка в правом верхнем углу указывает, были ли получены данные через инфракрасный порт от пульта дистанционного управления. Таким образом, красный цвет означает получение данных через инфракрасный порт, синий — успешное декодирование. Однако декодировать можно только протокол NEC (который используется многими производителями). Если вы передаете инфракрасный сигнал, не соответствующий этому протоколу, только красная точка в правом верхнем углу дисплея загорается, указывая на то, что инфракрасный сигнал был получен. Эта красная точка загорится синим цветом для инфракрасного сигнала, соответствующего протоколу NEC, и будет декодирована.

6. ЭКСAMPКОМПОНЕНТЫ LE

Конденсатор и светодиод входят в объем поставки; вы можете использовать их для начальных измерений с помощью измерителя LCR, чтобы ознакомиться с прибором.

РИС. 16 EXAMPКОМПОНЕНТЫ LE

7. ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Значок утилизации Наша информация и обязательство по выкупу в соответствии с Законом об электрическом и электронном оборудовании (ElektroG)

Символ на электрических и электронных продуктах:

Эта перечеркнутая корзина означает, что электрические и электронные изделия нельзя выбрасывать вместе с бытовыми отходами. Вы должны сдать свой старый прибор в регистрационный офис. Перед тем, как передать старый прибор, вы должны удалить использованные батареи и аккумуляторы, которые не закрыты устройством.

Варианты возврата:

Как конечный пользователь, вы можете бесплатно сдать при покупке нового устройства свое старое устройство (которое, по сути, имеет те же функции, что и новое). Небольшие устройства, внешние размеры которых не превышают 25 см, могут быть отправлены независимо от покупки нового продукта в обычных бытовых количествах.

Возможность реституции по месту нахождения нашей компании в часы работы: Simac GmbH, Паскальстр. 8, D-47506 Нойкирхен-Флюйн

Возможность реституции поблизости: Отправляем вам посылку ул.amp с помощью которого вы можете бесплатно отправить нам свой старый прибор. Для этой возможности вы должны связаться с нами по электронной почте service@joy-it.net или по телефону.

Информация об упаковке:

Пожалуйста, надежно упакуйте старый прибор во время транспортировки. Если у вас нет подходящего упаковочного материала или вы не хотите использовать свой собственный материал, вы можете связаться с нами, и мы отправим вам соответствующий пакет.

8. ПОДДЕРЖКА

Если какие-либо вопросы остаются открытыми или возникают проблемы после вашей покупки, мы готовы ответить на них по электронной почте, телефону и в системе поддержки билетов.

E-Mail: service@joy-it.net Билетная система: http://support.joy-it.net Телефон: +49 (0) 2845 98469 — 66 (10-17 часов)

Для получения дополнительной информации посетите наш webсайт: www.joy-it.net

www.joy-it.net

SIMAC Electronics GmbH Pascalstr. 8, 47506 Нойкирхен-Флюин

Узнать больше об этом руководстве и скачать PDF:

Документы / Ресурсы

Рекомендации

Мультиметр — комбинированный тестер, с помощью которого измеряют параметры электрической цепи и ее составляющих. Прибор используют не только в профессиональной сфере, но и в быту. Работать с устройством довольно легко. Тем, кто еще новичок в электротехнике, предлагаем узнать из нашей статьи, как пользоваться мультиметром.

Классификация

Приборы классифицируются на 2 группы — аналоговые и цифровые. Различаются они набором функций, точностью измерений, устойчивостью к помехам, удобством применения.

С помощью тестера можно найти:

  • силу и напряжение тока;
  • сопротивление участков цепи и отдельных элементов;
  • емкость конденсаторов;
  • индуктивность катушек;
  • температуру.

Для ремонта электронной или цифровой техники мультиметры просто незаменимы. Приборы помогают быстро обнаружить поломку и исправить ее.

Аналоговые

Представляют собой стрелочные тестеры, состоящие из чувствительного магнитоэлектрического измерителя, добавочных резисторов и шунтов. Информация передается на градуированную шкалу при помощи подвижной стрелки.

Преимущества аналоговых устройств:

  • устойчивость к помехам;
  • чувствительность к изменениям в электрической цепи;
  • доступная цена.

Недостатки:

  • большая погрешность измерений;
  • нелинейная шкала, для которой требуется предварительное выведение нуля специальным регулятором;
  • низкое внутреннее сопротивление;
  • нет автоматического определения полярности;
  • невозможно измерить переменный ток или напряжение.

Тем не менее некоторые инженеры предпочитают именно аналоговый вариант для тех случаев, когда при испытаниях электрических компонентов нужно точно определить направление и тенденцию изменения величины.

Цифровые

Инструменты последнего поколения очень популярны в среде электронщиков благодаря возможности быстро и точно измерить нужные параметры. Электронные мультиметры более приспособлены для повседневной работы, поэтому их можно с уверенностью рекомендовать новичкам.

Форма и размеры прибора могут быть различными, но алгоритмы измерения основных величин одинаковы практически у всех моделей.

Плюсы цифровых тестеров:

  • информация выводится на дисплей в виде числа с одним/двумя знаками после запятой в нужных единицах, что позволяет не затрачивать время на расшифровку;
  • при замене полярности значения отображаются со знаком минус;
  • высокое внутреннее сопротивление, что сокращает погрешности до минимума;
  • продуманный интерфейс и простое управление помогает быстро освоить принципы измерения и приступить к работе.

Минусов немного:

  • чувствительность к помехам;
  • тусклый дисплей и искажение значений при разрядке батареи питания.

Цифровые мультиметры имеют выход для подключения компьютера, с помощью которого производится запись и дальнейшая обработка результатов.

Конструкция

Мультиметрами чаще всего называют именно цифровые тестеры. Они могут быть как переносными, так и стационарными для профессионального использования.

Самые удобные для домашнего применения — компактные мобильные модели, которые можно держать в руке. Внешне они представляют собой небольшие приборы в виде плоской коробочки. Питание предусмотрено от батареек. На передней поверхности расположены дисплей, дисковый переключатель для установки режима и смены диапазона, 3-4 разъема для щупов и 1 для транзисторов.

На дисплее высвечивается значение измеряемой характеристики. С помощью ручки управления задается режим (измерение силы тока, напряжения, сопротивления и т.д.). По кругу нанесены обозначения показателей и их диапазон. При установке переключателя метка или стрелка должны быть обращены в нужный сектор.

Разъемы служат для подключения щупов. Черный провод по принятым в электротехнике правилам всегда «минус». «Плюсом» может быть любой цвет, в мультиметрах он, как правило, красный. Для измерения температуры в комплект включается термопара.

Гнезда имеют обозначения:

  • СОМ — «земля», нулевая клемма, предназначено для черного щупа;
  • VΩmA — для измерения напряжения, сопротивления и для тока до 200 mA, красный щуп;
  • 10ADC — для тока силой до 10 А.

Два последних используются как контакты для термопары. Отдельно расположен разъем для проверки транзисторов.

Приборы могут выпускаться в ударо-пыле-защищенном исполнении. От механических повреждений электронную начинку подстраховывает прорезиненный кожух, а герметичный корпус изготовлен из негорючего пластика.

Разрядность, разрешение, погрешность

Разрядность мультиметра — это величина, определяющая число разрядов для записи измеряемой характеристики. Она задает не точность прибора, а вид (длину) числа. Так например, разрядность 4 1/2 означает, что дисплей отображает 4 полных разряда и 1 половинчатый, то есть до 19999 отсчетов. Если величина выходит за эти пределы, необходимо переключиться в другой диапазон.

Разрешение обозначает степень точности прибора, то есть на каком интервале возможно обнаружение изменения характеристики. Если разрешение мультиметра составляет 1 мВ в диапазоне 4 В, то при измерении напряжения в пределах 1 В разница между соседними значениями будет не менее 1 мВ.

Погрешность цифрового мультиметра — это наибольшая ошибка, которую допускается прибором при измерении величин в конкретных рабочих условиях. Чем она меньше, тем ближе полученный результат к фактическому значению.

Чаще всего погрешность выражается в процентах. Например, если она составляет 1%, то при отображении напряжения в 200 В истинное значение распределяется в пределах от 198 до 202 В.

Как выставить нужный режим

Если неправильно установить переключатель, то прибор может выйти из строя, потребуется ремонт. Первое действие, которое нужно сделать перед измерением, — определить, какой ток протекает по проводам. Постоянный ток в батарейках, аккумуляторах или блоках питания, переменный — в бытовой электросети.

Если характер тока изначально неизвестен, можно воспользоваться индикаторной отверткой:

  • если индикатор не горит ни на каком контакте, — ток постоянный;
  • при переменном токе свечение в отвертке появляется на фазе, на нуле отсутствует.

Второе — нужно выбрать часть сектора для искомой характеристики. Стандартные обозначения:

  • ACV или V ~ — напряжение переменного тока;
  • DCV или V — — напряжение постоянного тока;
  • DCA — сила постоянного тока;
  • Ω — сопротивление;
  • hFE — усиление транзистора;
  • знак «диод» — режим проверки диодов.

Следующий шаг — выставить диапазон измерений. Когда сила тока неизвестна, переключатель фиксируется на максимальном значении. Если ток окажется больше ожидаемого, это поможет избежать поломки. Так для стандартного напряжения переменного тока 220 В устанавливается предел 600 или 750 В.

Как правильно пользоваться мультиметром: инструкция для чайников

Рассмотрим, как измерить несколько электрических характеристик.

Потенциал

Алгоритм для определения напряжения:

  1. Установить режим в позицию ACV или DCV в предполагаемом интервале.
  2. Черный провод подключить к коннектору СОМ, красный — к разъему VΩmA.
  3. Наконечники щупов соединить с контактами цепи. Например, ввести в отверстия розетки или на полюса батарейки.
  4. Провести измерение.


Высветившееся на дисплее число — величина напряжения в вольтах. Знак «минус» говорит о том, что полярность была нарушена. Если мультиметр поддерживает функцию удержания, значение можно зафиксировать кнопкой HOLD. Это удобно для большой цепочки измерений.

Сила тока

Эта характеристика измеряется только при последовательном подключении тестера в цепь и включенном питании. Большинство приборов дают возможность определить силу тока до 10 А, поскольку в быту большие значения используются редко.

Для проведения измерений в цепи устраивается разрыв. Дальнейшие действия по следующей схеме:

  1. Черный щуп — в гнездо СОМ.
  2. Красный — в разъем до 200 мА или 10А.
  3. Наконечниками осторожно прикоснуться к контактам.
  4. Считать с дисплея значение напряжения.


При работе с оголенными проводами необходимо соблюдать технику безопасности, чтобы не допустить удара током.

Сопротивление

Эту характеристику можно измерить без подачи питания. Исследуемый элемент просто замыкается между двумя щупами. Если проводимости нет, на экране высвечивается единица.

Последовательность действий:

  1. Установить режим Ω, выбрав максимальный диапазон.
  2. Щупы вставить в соответствующие коннекторы.
  3. Проверить состояние — замкнуть щупы друг на друга. Должен появиться 0 или небольшое число, которое нужно учитывать при измерении сопротивления цепи.
  4. Концы проводников набросить на контакты исследуемого объекта.
  5. На экране появится сопротивление элемента или участка цепи.

Для точных измерений рекомендуется провести 2-3 попытки.

Измерение транзисторов

Для проверки исправности pn-переходов и определения коэффициента усиления:

  1. Установить режим
  2. Вставить ножки транзистора в разъем в соответствии с цоколевкой, соблюдая зоны PNP и NPN.
  3. Отображением на дисплее будет значение усиления сигнала.


Диоды и простейшие транзисторы также измеряются при установленном режиме «диод». К базе подключается красный щуп (плюс), на эмиттер или коллектор черный (минус). При правильной полярности на экране высветится коэффициент передачи.

Емкость конденсатора

До проведения замеров конденсатор должен быть разряжен. Обнулить его можно отверткой с изолированной ручкой, соединив выводы между собой, но более безопасно с помощью 15 вольтовой лампочки с припаянными щупами. Даже мощный конденсатор до 400 В разряжается быстро как без риска для человека, так и самого электрического элемента.

Измерение емкости производится по схеме:

  1. Выставить режим Fcx.
  2. К коннектору для конденсаторов подключить красный щуп, черный — к СОМ.
  3. Измерить емкость. На дисплее она появится в Фарадах.

При неисправностях конденсатора сопротивление бесконечно. Пробой характеризуется уменьшением, кратным его величине.

Прозвонка

Чтобы установить целостность проводки или кабелей, производится их «прозвон». Он заключается в проверке сопротивление участка на минимальном диапазоне измерений:

  1. Установить режим прозвонки (значок «звуковой микшер»).
  2. Подключить щупы к соответствующим гнездам, а наконечники — к концам участка проводки.


Если целостность не нарушена, раздастся звуковой зум, а на дисплее будет близкое к 0 значение. Если число нестабильное и «прыгающее», проводимость отсутствует.

Измерение температуры

Некоторые модели поддерживают функцию определения температур. Для этого приборы комплектуются термопарами — проводниками из разных металлов.

При контакте с температурной средой между их концами образуется электрический потенциал. Измеряя его, можно найти температуру объекта. На шкале с функцией термодатчика предусмотрен сектор ТЕМР, куда нужно устанавливать переключатель режима.

Последовательность измерений:

  1. Вставить концы термопары в соответствующие коннекторы, соблюдая полярность.
  2. Приблизить условный спай к точке, в которой нужно найти температуру.
  3. На экране отобразится искомая величина.

Если полярность нарушена, то при исследовании более горячего объекта температура будет понижаться. Для проверки работоспособности можно зажать конец термопары в руках. На экране должно появиться значение около 36°.

Популярные модели: краткий обзор мультиметров

Большинство тестеров производится в Китае. Они достаточно точно определяют электрические характеристики и при соблюдении правил эксплуатации надежны и долговечны. Важно знать, как пользоваться мультиметром для начинающих, чтобы при работе не возникло проблем.

Цифровые мультиметры DT

Мультиметр DT830B

Предназначен для измерения тока не выше 10 А. На корпусе 3 стандартных разъема и один для проверки транзисторов и диодов. Питание прибора осуществляется от батареи типоразмера «крона». Для нее нет отдельного гнезда на корпусе, она вставляется в при полностью снятой задней крышке.

В комплекте 2 щупа. Один черный, который подключается к разъему СОМ, другой красный — во второй или третий согласно измеряемой величине. Щупы изготовлены в бюджетном исполнении. При желании можно купить более качественные, но и эти вполне удобны для использования.

При проведении замеров сначала подключается черный провод, затем красный. Держать щупы нужно аккуратно, не касаясь металлических наконечников. Если «плюс» и «минус» перепутаны, прибор даст об этом знать знаком «-» перед числом на экране.

Максимальное значение напряжения для этого мультиметра — 500 В. При приближении к нему на дисплее появляется значок «HV» — High voltage, предупреждающий о высоком вольтаже. Если нужна максимальная точность измерений, необходимо учитывать сопротивление самих щупов. Это определяется при замыкании наконечников друг на друга. Модель DT830В недорогая. В комплекте может отсутствовать инструкция на русском языке.

При использовании тестера нужно учитывать особенности:

  • погрешность составляет около 1%;
  • ручная установка режимов;
  • исполнение не ударопрочное, пластиковый корпус при ударе можно повредить;
  • щупы среднего качества;
  • нет подсветки дисплея.

Мультиметр DT832

Модель очень похожа на предыдущую, но функционал расширен возможностью использования генератора и измерения температуры. Помимо щупов в комплект входит термопара.

Для удобства пользователей индикатор питания показывает разрядку батарейки, на дисплее появляется знак ВАТ. Система защиты содержит предохранители, которые при ошибке оператора перегорают, и тогда их необходимо менять на аналогичные новые.

Для использования генератора переключатель функций нужно установить в положение _|¯|_|¯. Щупы подключить к нулю и VΩmА. Между ними появится ток частотой 50 Гц и напряжением около 5 В, который можно использовать для своих целей.

Мультиметр DT838

Модель по виду и принципу работы очень похожа на предыдущую. Выполняет функции — измерение параметров постоянного и переменного тока, транзисторов, прозвонка плюс тестирование диодов, определение температуры, емкости конденсаторов. Генератора как в DT832 нет.

Щупы достаточно мощные и имеют большое сопротивление. В комплекте есть термопара с датчиком. Дизайн девайса более понятный, яркая шкала, крупные обозначения. Переключатель двухцветный, со светлой стрелкой на указателе. Это позволяет меньше ошибаться при перестановке режимов. При перегрузках на дисплее высвечивается «1». Для защиты от ошибок оператора в систему встроен плавкий предохранитель.

Мультиметр DT9208A

Модель имеет широкий функционал. С ее помощью можно:

  • измерить силу тока, напряжение, частоту и сопротивление;
  • прозвонить цепь;
  • провести диодный тест;
  • определить коэффициент передачи транзистора и емкость конденсатора.


Прибор укомплектован термопарой, которая используется для измерения температуры от -40 до 1000°С. Индикатор разрядки батареи — знак на дисплее +- — укажет, что пора заменить источник питания. При паузе более 15 мин срабатывает автоматическое отключение прибора. Для его включения необходимо нажать на кнопку Power.

Особенность DT 9208A — возможность измерять токи свыше 10 А. Для этого на корпусе присутствует отдельный разъем. Для удобства считывания данных дисплей можно повернуть и установить под нужным углом.

Все пределы защищены от перегрузок комбинированной системой. Информация на экране удерживается с помощью кнопки HOLD. Для защиты от химического воздействия и пыли комплектация может включать силиконовый кожух. Если его нет, рекомендуется приобрести самостоятельно.

Мультиметр DT9205A

Высокоточный прибор с погрешностью не более 0,5% применяются в полевых или лабораторных условиях, мастерских, домашнем хозяйстве. Диапазон рабочих температур — 0…40°С. Хранить рекомендуется при -10…+50°С.

Корпус достаточно большой — 186х86х41 мм, изготовлен из прочного пластика желтого цвета. Дисплей тоже крупный, хорошо читаются все цифры и значки.

Питание включается кнопкой Power. Внизу расположены 4 коннектора, в том числе для измерения тока свыше 20 А. Разъем для транзисторов — в правом верхнем углу. Нет функций определения температуры и частоты, использования генератора.

Мультиметр DT-61

Этот прибор объединяет 6 функций:

  • стандартного цифрового тестера;
  • влагомера;
  • термометра;
  • бесконтактного измерителя переменного тока;
  • люксметра;
  • шумомера.

DT-61 предназначен для профессиональной и бытовой сферы. Цифровой мультиметр измеряет силу и напряжение постоянного/переменного тока, сопротивление, осуществляет прозвонку электрических цепей, тестирование диодов и определение температуры.

Помимо этого в его функционал включено измерение уровня шума в производственных цехах, школах, офисах, жилых домах, аэропортах. Прибор осуществляет проверку акустики студий, студенческих аудиторий и оборудования, работающего с выделением шумового загрязнения. Для перехода в режим шумомера переключатель нужно установить в сектор dCB, направить микрофон на источник звука (горизонтально). При сильном ветре рекомендуется применять ветрозащиту.

Функция люксметра используется при определении освещенности помещений. Светочувствительный селеновый фотоэлемент преобразует энергию света в электрическую и определяет интенсивность наклонно падающих лучей с высокой точностью. Для проведения измерений переключатель устанавливается в режим Lux.

Определение влажности воздуха производится в режиме ON. Необходимо разместить прибор в помещении как минимум на 2 часа. Показатели будут отображены на дисплее %RH.

Заключение

Как пользоваться мультиметром — актуальный вопрос для тех, кто начинает пошагово осваивать азы электротехники. Устройство поможет определить параметры электрических цепей с большой точностью и скоростью. Некоторые модели выполняют функции влагомера, люксметра и шумомера, что значительно расширяет возможности этих удобных приборов.

Приветствую всех читателей на страницах сайта!
Наверное, не многие радиолюбители еще не слышали о LC тестере T4, а те кто обзавелся или собрал самостоятельно подобный прибор вряд ли назовут его бесполезным.
Интерпретаций данного тестера сегодня существует довольно большое множество – это и конструктор, и готовый модуль с питанием от кроны, и модули с литиевыми аккумуляторами, и эти же модели, но уже в корпусе из оргстекла/акрила.
Сегодня хочу поделиться информацией о еще одной версии LC-тестера – мультифункциональном тестере ТС-1 с цветным экраном, встроенным литий-ионным аккумулятором, приличным корпусом и парой дополнительных полезных функций.
Кому данная тема интересна, приглашаю под кат.

Сначала пара слов для тех, кто еще не знает для чего служат подобные приборы.
Как правило, большую часть радиокомпонентов можно проверить обычным мультиметром. Однако есть и такие, которые мультиметром не протестировать вовсе или удастся это сделать лишь частично. Например, полевые транзисторы MOSFET, J-FET. Кроме того, не все мультиметры могут измерять емкость конденсаторов, а те которые могут это делать, не могут измерять ESR – эквивалентное последовательное сопротивление и Vloss – напряжение утечки.
Не удастся так же мультиметром определить напряжение стабилизации стабилитронов при затертой или мелкой маркировке.
И вот в этих случаях очень может выручить многофункциональный тестер ТС-1, которым можно тестировать резисторы сопротивлением до 50 МОм, диоды, стабилитроны с напряжением стабилизации до 30 вольт, светодиоды, npn и pnp биполярные транзисторы, N и P канальные полевые транзисторы MOSFET и J-FET, IGBT биполярные транзисторы с изолированным затвором, тиристоры, симисторы, измерять индуктивность, емкость, ESR, Vloss конденсаторов, а так же напряжение литиевых аккумуляторов до 4,5 вольт. Тестер умеет дешифровать сигналы пультов дистанционного управления. Питается прибор от внутреннего литий-ионного аккумулятора и заряжается через microUSB разъем от любого источника напряжением не более 6 вольт. Информация о результатах теста выводится на цветной TFT дисплей размером 1,8 дюйма с разрешением 160*128 пикселей.

Поставляется тестер в небольшой коробке с цветным принтом и информацией о возможностях тестера.




Внутри лежит интуитивно понятная инструкция на английском языке и антистатический пакет.


Внутри антистатического пакета спрятан тестер, короткий шнур для зарядки и … еще два антистатических пакета).

В полностью распакованном виде содержимое пакетов выглядит так:

Большой плюс, что положили в комплект щупы – не нужно допаивать провода к радиодеталям с короткими ножками или аккумуляторам, чтобы вставить их в разъем. Наконечники щупов подпружинены и хорошо зажимают выводы радиокомпонентов.
Но есть и претензии к щупам – они могли бы быть и одного цвета с проводами. Позже, когда проводил тесты, испытывал дискомфорт от этого. Оно может и не имеет значения – тестеру все равно какой контакт детали, в какой контакт колодки вставлен. Он сам разберется, но все же когда внимание сосредоточено на приборе/щупах/измерениях, то лишний отвлекающий фактор не к месту (а может и придираюсь).

Конденсатор на 10 мкф*25 вольт и красный светодиод положили в качестве бонуса, а вызвавшие сначала недоумение неразрезанные контакты, позже пригодились для калибровки тестера – да, есть тут и такая задекларированная в инструкции процедура.
С самого начала прибор вызвал интерес тем, что у него приличный корпус, ничего делать как в случае с бескорпусным вариантом LC тестера Т4 не нужно. В руке лежит удобно.

Излишество или хороший тон, но экран закрыт транспортировочной пленкой.
К номерным контактам разъема подключаются любые контакты радиодеталей, кроме стабилитронов. Для стабилитронов предусмотрены контакты разъема КАА (катод, анод, анод).
В инструкции указано, что не следует одновременно в номерные контакты вставлять, например, транзистор, а в контакты для стабилитронов стабилитрон – будет проводиться тест только компонента в номерных контактах.
Рядом с разъемом расположено окно инфракрасного датчика для проверки и декодирования сигналов пультов ДУ.
Все управление прибором производится одной кнопкой, которая в инструкции обзывается многофункциональной. Под «много» имеется ввиду, краткое нажатие для активации прибора и начала теста, после установки компонента в разъем и длительное нажатие для принудительного выключения прибора. Как и в Т4 здесь не забыли про автоотключение после 25 секунд бездействия. Кому этого времени покажется много, тот может воспользоваться информацией из инструкции, вскрыть прибор и установить паяльником перемычку, задав нужный период до отключения от 10 до 25 секунд.
На задней стороне прибора находится разъем microUSB и светодиод. Во время зарядки он светится красным, а по ее окончании привычно зеленым цветом.

Дальняя и нижняя сторона корпуса

Размеры корпуса

Как и все приборы, содержащие аккумулятор, тестер перед использованием рекомендуется зарядить. Максимальный ток зарядки составляет 0,44 Ампера.

С описанием внешнего вида и характеристикам всё и можно переходить к тестированию радиокомпонентов.
Для включения тестера кратко нажимаем кнопку и видим следующее на экране:

Прибор пишет, что не обнаружил тестируемый компонент или компонент поврежден.
Выпрямительный диод 1N4007, диод Шоттки SR504, сдвоенный диод Шотки SBL2040CT.

Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается. Во время теста светодиод начинает мерцать.

Стабилитроны на разное напряжение:

Транзисторы структуры npn: BC547C, МJE1309, КТ312Б, КТ315Б

MJE13003С с защитным диодом и составной транзистор КТ827А

Транзисторы структуры pnp: МП40А, ВС557В, S8550

Полевые транзисторы: APM3055L – N-канальный MOSFET и LD1010D – N-канальный JFET с PN диодом:

Из имеющихся у меня под рукой компонентов тестер не совсем точно отобразил N- канальный MOSFET К3742. Его он показал как IGBT:

P-канальный MOSFET BSS92

А вот IGBT транзистор G20N50C тестер отобразил как N канальный MOSFET, но тут есть оговорка: по одному даташиту он N-канальный MOSFET, а по другому N-канальный IGBT и обозначения немного разные.


Не смотря на «путаетесь в показаниях») нужно сказать, что тестер суть компонента определил – будь транзистор пробитым или оборванным, мы бы увидели совсем иную картинку.
Последние две фотки снимались по случаю на телефон на радиорынке так, как в наличии P-канальных MOSFET и IGBT в наличии не было. Не обессудьте.
Следующими в очереди были симисторы MAC97A8 и BT134600E

В инструкции к прибору говорится, что тестер способен тестировать тиристоры и симисторы с током управляющего электрода до 6 mA, но у MAC97A8 этот параметр равен 7 mA, а у BT134600E — 25 mA. Выходит или в инструкции ошибка или прибор лучше). С конденсаторами такая же история – до 100 mF. Микро или мили? Учитывая, что тестер измеряет конденсаторы емкостью больше 100 мкФ, то тогда в инструкции имеются в виду миллиФарады, а это 100 000 микроФарад. Но вернемся к тестированию.
Измерение индуктивности:

Тестер умеет распознавать сигналы пультов дистанционного управления и декодировать их. Но касается это только пультов работающих в IR формате Hitachi. Из таковых оказался только ПДУ от ДВД плейера BBK. При нажатии кнопок на пульте картинка на дисплее тестера менялась.


В случае с остальными пультами на зеленом поле экрана мигала красная крупная точка, просто сигнализируя о том, что пульт работает и что то излучает.
Насколько полезная данная функция судить не берусь, но пусть лучше будет.
Сопротивление тестер измеряет в диапазоне 0,01 Ом — 50 Мом. Не всё нашлось в закромах, но общий вывод – справляется. Погрешность есть, как, впрочем, и у всякого измерительного прибора. В инструкции, кстати, она не указана.

На резисторах провел сравнительные замеры тремя приборами:

Как говорится, придраться к каждому можно. И в то же время каждый не далеко ушел от соседа. Где то больше, где то меньше, но все равно достаточно точно.
Проверку конденсаторов провел по той же схеме. Расхождения между приборами присутствуют, но иное представить трудно.

Опять же сравнительные замеры тремя приборами:

Примечательный факт — конденсаторы были разные — керамика, лавсан и другие, но с МБМ не смог справиться ни один из приборов. При этом, обозреваемый ТС-1 показал лишь на 35 % больше от номинала. Два других дали погрешность почти на +80 %).

Как уже говорил, важным параметром электролитических конденсаторов является ESR – эквивалентное последовательное сопротивление. Его возрастание приводит к некорректной работе схем. Не лишним будет знать и Vloss конденсатора – напряжение утечки, измеряющееся в процентах и показывающее, сколько процентов заряда теряет конденсатор через одну секунду после прекращения процесса заряда. При его значении в несколько процентов конденсатор лучше отложить в сторону.
Измеренные величины ESR сравниваются с табличными, обязательно следует учитывать напряжение, на которое рассчитан конденсатор.

Сначала фото приличных конденсаторов. Номиналы на фото написаны желтым цветом.

Пара сравнительных фото с мультиметром.
Тот же конденсатор 47 мкф*160 вольт и 2200 мкф*25 вольт.

Результаты сравнения показаний емкости трех приборов такие же как и в случае с резисторами и неэлектролитическими конденсаторами – плюс/минус, но все рядом.
В завершении конденсаторной главы несколько фото негодных конденсаторов.
4,7*25 В, 100 мкф*10 В, 10 мкф*50 В:

4,7 мкф*400 В, 22 мкф* 250 В, 470 мкф * 25 В

Следуя инструкции и по опыту угробленного Т4, скажу что перед проверкой конденсаторов их следует обязательно разрядить.
Кроме всего вышеперечисленного ТС-1 позволяет так же проверять напряжение элементов питания с напряжением до 4,5 Вольт.

Последним пунктом из функционала тестера остается калибровка. Тут, как в случае с Т4, не требуется конденсатор. Здесь для калибровки достаточно вставить в колодку те самые неразрезанные контакты из комплекта, что при распаковке удивили своим наличием в комплекте, и нажать кнопку.
После этого на экране появится сообщение о самотестировании и ниже шкала с процентами его выполнения.

На уровне 22 процентов тестер попросит извлечь замкнутые контакты и тест продолжится.

На этом повествование о богатом функционале маленького прибора можно заканчивать и переходить ко всем любимой разборке и тесту аккумулятора.
Разбирается прибор просто, для этого нужно лишь открутить четыре самореза. Аккумулятор приклеен на двухсторонний прозрачный скотч. Теперь ищу такой же – еле оторвал аккумулятор, пришлось поддевать пластикой картой. Если кто знает, прошу дать ссылку. Приклеено было так хорошо, что при отрывании аккумулятора обертка слегка поменяла рельеф, но с самим аккумулятором все в порядке.

Мозговым центром тестера является микроконтроллер Atmega 324PA, надпись на втором чипе старательно затерта.


Обратите внимание на область платы в красном прямоугольнике – замкнув контакты на массу можно изменить время до отключения тестера. С завода перемычек нет и установлено время 25 секунд. Добавив перемычки можно установить 10,15,20 секунд.

С обратной стороны платы все так же аккуратно и без следов флюса, а плата экрана припаяна через пины (надеюсь правильно назвал), что куда надежнее, чем шлейф, как в Т4.


Тест аккумулятора провел из спортивного интереса аж тремя способами: зарядка-разрядка iMax B6 (током 0,2 А), зарядка-разрядка EBD-USB (током 0, 18 А) и зарядка через USB-тестер. И на удивление все три теста дали практически одинаковый результат – аккумулятором прибор укомплектован качественным.



Под финал изучения тестера под руку попались динисторы DB3. С ними, не смотря на напряжение пробоя по даташиту от 28 до 32 вольт, тестер тоже как-то справился.

Подводя черту, по традиции и правилам сайта отмечу минусы и плюсы.
Минусы (или пожелания): прибору следует немного добавить точности измерений, вопросы по определению некоторых MOSFET и IGBT транзисторов и хотелось бы щупы и провода одного цвета.
Плюсы: многофункциональность, компактность и законченный вид благодаря корпусу, внутренний качественный аккумулятор, щупы, простая калибровка, цветной дисплей.
P.S. Из имеющихся теперь тестеров T4 и ТС-1 предпочту пользоваться обозреваемым.

Товар для написания обзора предоставлен магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Электромонтажные и пусконаладочные работы всегда связаны с измерением характеристик электрической сети, проверки наличия напряжения и работоспособности цепей прибора или линии. Для этих целей существует огромное количество различных измерительных приборов и тестеров, но самым универсальным и полезным прибором для домашних мастеров и профессионалов является мультиметр. В этой статье рассмотрим как им пользоваться.

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Содержание

  • 1 Внешний вид мультиметра
    • 1.1 Краткое описание измеряемых параметров и их обозначение
    • 1.2 Назначение разъёмов для подключения щупов
    • 1.3 Какие ещё могут быть кнопки
  • 2 Как измерять напряжение
    • 2.1 Постоянное напряжение
    • 2.2 Переменное напряжение
  • 3 Измеряем силу тока
    • 3.1 Постоянный ток
    • 3.2 Переменный ток
  • 4 Измеряем сопротивление
  • 5 Как прозвонить провода мультиметром
  • 6 Проверка диодов, конденсаторов и транзисторов (режим hFE)

Внешний вид мультиметра

Мультиметр – это универсальный прибор для измерения электрических характеристик, который объединяет в себе множество функций (в зависимости от модели). В минимальной комплектации такой прибор состоит из амперметра, вольтметра и омметра. В самом распространенном варианте он выполняется в цифровом виде портативного исполнения. Внешне имеет прямоугольную форму с дисплеем и поворотным или кнопочным переключателем функций. Для выполнения замеров к мультиметру подключаются два щупа (красный и черный) в строгом соответствии с маркировкой на приборе.

Краткое описание измеряемых параметров и их обозначение

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Для обозначения параметров на мультиметрах производители применяют стандартную маркировку на английском языке или специальные символы. Для работы с прибором важно знать основы электротехники, чтобы правильно и безопасно осуществлять необходимые измерения.

Каждый прибор разделен на зоны с настройками для работы с определенным видом напряжения электрической сети:

  • ACV или V~ – напряжение переменного тока;
  • DCV или V- – напряжение постоянного тока;
  • DCA или A- – сила постоянного тока;
  • — сопротивление на участке цепи или в электрическом приборе.

Назначение разъёмов для подключения щупов

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

В зависимости от модели мультиметра, количество гнёзд для подключения щупов, может быть различным. Подключать щупы для измерения электрических параметров сети необходимо в правильные гнёзда прибора. У большинства измерительных приборов маркировка гнёзд следующая:

  • 10А- – для замера постоянного тока не превышающего 10 А (в это гнездо подключают красный плюсовой щуп);
  • VΩmA или VΩ, V/Ω — в это гнездо подключают красный (плюсовой) щуп при определении напряжения, силы постоянного тока до 200 мА, для прозвонки диодов и цепей;
  • COMMOM (COM) – общее гнездо для черного (минусового) щупа на всех типах мультиметров;
  • 20А – такое гнездо существует не на всех моделях (чаще всего можно встретить на дорогих профессиональных устройствах), задача этого гнезда аналогична 10А-, но с пределом до 20 А.

Какие ещё могут быть кнопки

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Помимо основных настроек мультиметра, он может иметь и дополнительные. Дорогие профессиональные устройства намного функциональнее бюджетных вариантов и позволяют специалисту производить следующие измерения:

  • силы переменного тока (при наличии токоизмерительных клещей);
  • целостность цепей (прозванивать), то есть проверять сопротивление сигнализируя о результатах с помощь звуковой или световой сигнализаций, а также показаниями на дисплее;
  • тестирование работоспособности диодов (переключатель ->Ι-);
  • параметров транзисторов (разъёмы и кнопки с обозначением hFE);
  • ёмкости и индуктивности;
  • температуры (для этого используется внешний датчик — обычно термопара).
  • частоты (Hz).

Некоторые модели имеют дополнительные функции по индикации и обеспечению работы с устройством: подсветку, автоотключение питания и экономичный режим для аккумулятора, фиксирование результатов (кнопка hold) и запись в память устройства, выбор пределов измерений и индикацию по перегрузке и разряду батареи. Для безопасной работы с мультиметром важно, чтобы прибор имел определенную защиту при неправильном выборе предела измерений или режима работы. Обычно такая защита осуществляется с помощью плавких предохранителей и автоматических выключателей. Большинство качественных приборов от ответственных производителей имеет такую защиту.

Как измерять напряжение

Для человека, который имеет определенные навыки и знания в электротехнике не составит особого труда производить измерения с помощью мультиметра. Для тех, кто никогда не работал с таким типом устройств, ниже представлено как пользоваться стандартным мультиметром.

Важно! Все работы, должны проводится специалистами или людьми, имеющими определенные навыки в электротехнике. Помните, что поражение электричеством опасно для жизни!

Постоянное напряжение

С помощью этого режима измеряется напряжение элементов питания, батареек и аккумуляторов автомобилей. Большинство цепей управления в современных системах АСУТП имеют потенциал 24 В постоянного тока.

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Для того, чтобы выполнить измерение в этом режиме необходимо перевести прибор в положение DCV, при этом замер (если не знаете примерное напряжение) лучше всего начинать с максимального значения переключателя, постепенно уменьшая диапазон, до получения нужной размерности. Если на экране прибора результат измерения отображается со знаком «минус», то значит была нарушена полярность подключения щупов (это значит «минус» был подключен к «плюсу» цепи, в которой производится измерение, а «плюс» к «минусу»).

Что касается размерности, то тут все просто: если, к примеру, на экране высвечивается цифра 003, то значит необходимо уменьшить диапазон измерения. Постепенно снижая величину напряжения с помощью переключателя, будет высвечиваться 03, 3.

Если на дисплее отображается цифра «1» или другое непонятное число, то скорее всего неправильно выбран режим работы или необходимо повысить верхний предел измеряемого напряжения. Другими словами измеряемое значение напряжение должно быть меньше, чем верхний предел, выбранный на мультиметре.

Стандартные значения для переключателя в зоне постоянного напряжения: до 200мВ, 2В, 20В, 200В, 1000В.

Обратите внимание! Произвести измерение напряжения на термопаре, значение которого всего несколько милливольт, скорее всего не получиться из-за погрешности мультиметра.

Переменное напряжение

Режим измерения напряжения переменного тока включается перемещением переключателя в положение V~ или ACV. Этот режим также имеет несколько диапазонов. Обычно на стандартных мультиметрах есть два варианта выбора переменного напряжения: до 200 В и до 750 В.

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Например, для измерения напряжения в бытовой сети 220В, устанавливают переключатель на 750 В и в розетку вставляют два щупа (в разные отверстия). На дисплее отобразится действительное напряжение в текущий момент времени. Обычно это значение от 210 до 230 В, другие показания уже являются отклонениями от нормы.

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Измеряем силу тока

Для этого необходимо знать какой ток будем измерять: постоянный или переменный. Большая часть стандартных мультиметров способна выполнять измерения постоянного тока, а вот для переменного требуются мультиметры с токоизмерительными клещами.

Постоянный ток

Для этого перемещаем переключатель мультиметра в режим DCA. Красный щуп должен быть подключен к гнезду с обозначением «10 А», а черный к «COM». Если значение измеряемого тока до 200 мА, то для большей точности показаний, красный щуп переставляем в разъём 200 мА. В любом случае, чтобы не спалить прибор, измерения лучше всего начинать с щупом в разъёме 10 А и при необходимости его переставить. То же самое производим и с переключателем: сначала выставляем наибольший ток, постепенно уменьшая диапазон для получения нужного максимального предела до минимального значения в 2000 микроампер.

Обратите внимание! Для измерения постоянного электрического тока, щупы мультиметра располагают в разрыв цепи.

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Необходимо знать, что щупы мультиметра подключаются в разрыв цепи. То есть красный щуп устанавливается на «плюс» источника питания, а черный к «плюсовому» проводнику.

Переменный ток

Значение силы переменного тока позволяет измерить мультиметр, имеющий в составе специальные токовые клещи.

Принцип работы токоизмерительных клещей заключается в явлении электромагнитной индукции.  Измерение производится бесконтактным способом, путем помещения проводника в электромагнит со вторичной обмоткой. Первичный ток (измеряемый), пропорционален вторичному (который возникает на обмотке). Поэтому прибор с легкостью рассчитывает искомое значение первичного переменного тока.

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

При измерении устанавливается максимальный предел (аналогично измерениям постоянного тока), проводник заводится внутрь клещей, как на фото выше и на экране высвечивается измеренное значение в амперах.

Измеряем сопротивление

Для замера сопротивления переключатель устанавливается в режим сопротивления (Ω) и выбирается нужный диапазон. Один из щупов прикладывается к одному входу резистора, другой к другому. При этом на дисплее высветится значение сопротивления. Переключая диапазон можно получить нужную размерность значения сопротивления.

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Если на дисплее высвечивается «нуль», то следует уменьшить диапазон, а если «1» то увеличить.

Как прозвонить провода мультиметром

Прозвонка проводов означает определение из целостности. По сути мультиметр определяет сопротивление замкнутого контура и если это значение близко к нулю, то контур считается замкнутым и выдаётся звуковой сигнал. Не всякий мультиметр может прозванивать провода со звуком, но большинство из них на это способны.

Прозвонка — это проверка целостности цепи. Для прозвонки проводов мультиметр устанавливается в нужный режим. Чаще всего он совмещен с прозвонкой диодов, но может быть вынесен отдельно и отмечен знаком колокольчика. Далее один щуп прикладывается к одному концу проводника, а другой щуп к другому. При этом звучит сигнал или появляется индикация светом или на дисплее. Если индикация есть – цепь не разорвана, если нет, то проводник поврежден или цепь разорвана.

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Проверка диодов, конденсаторов и транзисторов (режим hFE)

Этот режим имеет не каждый прибор. Для проверки сопротивления диодов, выбирается соответствующий режим и по аналогии с прозвонкой проводника выполняются нужные действия.

Для определения параметров конденсаторов и транзисторов на приборе устанавливается специальный режим «hFE».

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

У транзисторов имеются три выхода: база, эмиттер и коллектор, которые подключаются к разъемам В, E, F мультиметра. При правильном подключении на дисплее отобразится величина усиления транзистора.

У конденсаторов емкость измеряется путем установки концов конденсатора в разъемы с обозначением Сх. При этом на дисплее отобразится номинальное значение ёмкости электронного компонента.

Сегодня речь пойдет о китайском тестере компонентов LCR-TC1. Пришел он в обычном почтовом пакете, щедро обернутный пупыркой и в антистатическом пакетике.

Стоимость:

  • AliExpress ~25$
  • Banggood ~1430 руб (25$)

Кроме самого тестера в комплект входили щупы, перемычка для калибровки, конденсатор на 1мкФ, светодиод и кабель micro USB для зарядки. Да, да. Эта версия имеет встроенный аккумулятор. Выглядит тестер довольно симпатично. Корпус хоть и китайский, но корпус. Гораздо удобнее пользоваться такой вещью, чем голой платой с висящей на проводах батарейкой. 

На лицевой стенке корпуса виден дисплей, кнопку запуска, ZIP панельку для подключения тестируемого компонента и ИК приемник. Надпись на корпусе предупреждает, что компонент следует разряжать, прежде чем тыкать им в прибор. На нижнем торце расположен разъем для подключения к ЗУ и индикатор зарядки (двухцветный).

Все остальные торцы пустые. Проверим, как оно все работает. Жмем кнопку и прибор оживает.

В эту версию устанавливается цветной дисплей. Разрешение невелико, но большего и не надо, информация прекрасно читается. Сама работа тестера мало отличается от его собратьев. Подключаем компонент, жмем кнопку, видим результат. Перед началом использования необходимо провести калибровку. Для этого замыкаем все 3 входа и жмем кнопку старта (при желании использовать провода для измерений, калибровать необходимо с подключенными проводами). Начнется процесс калибровки:

Через некоторое время тестер попросит убрать перемычки.

После выполнения требования, тестеру потребуется еще несколько секунд на завершение калибровки.

Перейдем к проверке функционала. От других подобных тестеров данный отличается наличием двух функций: распознавание ИК посылок от пультов управления и проверка стабилитронов. С этих функций и начнем. Сперва вооружимся ПДУ и включим прибор. Дожидаемся пока тестер пожалуется, что к нему подключен неизвестный или неисправный компонент, затем жмем кнопку на пульте и вуаля. Тестер не только распознал нашу посылку, но даже нарисовал ее на дисплее:

Теперь посмотрим, как у нас с проверкой стабилитронов. Для них в панельке есть специальные контакты, обозначенные как «К» и «А». Катод и анод соответственно. Подключаем стабилитрон соблюдая полярность, жмем Start и видим параметры подопытного. В данном случае стабилитрон на 5.1В.

Мультиметр для данного стабилитрона в схеме параметрического стабилизатора стабилитрон + резистор показал те же 4,93В. Что ж, неплохо. Настало время устроить прибору настоящий тест. Как и в прошлый раз результаты измерений будут сравниваться с профессиональным RLC измерителем фирмы Instek. А заодно и с героем предыдущего обзора M328. Начнем с резисторов:

Номинальное значение Instek LCR-819 M328 TC1
68 Ω 66,9  Ω 67,0 Ω 66,6 Ω
1,2 К 1193  Ω 1189 Ω 1196 Ω
5,6 К 5649  Ω 5643 Ω 5654 Ω 
33 К 33,0 Ω 33,01 К  32,98 К 
100 К 99,4 К 99,30 К 99,41 К
330 К 326 К 323,2 К 325,1 К
1,3 М 1301 К 1295 К 1304 К

Показатели на уровне предыдущего тестера. Теперь задачка посложнее, индуктивности:

Номинальное значение Instek LCR-819 M328 TC1
50 мкГн 0,05 мГн 0,05 мГн 0,05 мГн
100 мкГн 0,11 мГн 0,09 мГн 0,1 мГн
300 мкГн 0,30 мГн 0,29 мГн  0,29 мГн 
5 мГн 4,9 мГн 3,1 мГн 3,1 мГн

Та самая индуктивность 5 мГн, с которой не справился предыдущий тестер, оказалась не по зубам и этому. Не нравятся им катушки с запредельным сопротивлением.

Ну и конденсаторы:

Номинальное значение Instek LCR-819 M328 TC1
Пленка
100 нФ 103,0нФ 103,0 нФ 102,8 нФ
220 нФ 212,7 нФ 212,6 нФ 212,0 нФ
470 нФ 459 нФ 461,0 нФ 460,9 нФ
680 нФ 692 нФ 693,0 нФ 694,0 нФ
1 мкФ 958 нФ 958,4 нФ 957,6 нФ
Электролиты
1 мкФ 1005 нФ (0,90) 1010 нФ (0,92) 1012 нФ (0,85)
47 мкФ 43,2 мкФ (0,71)  44,91 мкФ (0,68)  44,8 мкФ (0,67)
100 мкФ 95,1 мкФ (0,62) 97,5 мкФ (0,56) 98,55 мкФ (0,57) 
220 мкФ 215,2 мкФ (0,68)  219,0 мкФ (0,61) 217,7 мкФ (0,65)
3300 мкФ 3259 мкФ (0,04) 3376 мкФ (0,03) 3385 мкФ (0,05)
4700 мкФ 4583 мкФ (0,06) 4803 мкФ (0,05) 4796 мкФ (0,05)

И тоже весьма неплохо.

Транзисторы и диоды тоже вполне себе тестирует:

Тесты окончены, настало время посмотреть чего там китайцы насовали внутрь. Берем крестовую отвертку и выкручиваем 4 шурупа на задней стороне прибора. Затем аккуратно разнимаем половинки. Как оказалось, аккуратность была вовсе не лишней, т.к. АКБ приклеен на задней стенке, а плата прикручена к передней.

АКБ совсем крошечная. По виду миллиампер 500-600 емкости. Но при желании в корпус легко устанавливается более емкий аккумулятор. Выкручиваем два шурупа, крепящие плату и вытаскиваем саму плату. На лицевой стороне ничего интересного, дисплей, разъем, ИК приемник и кнопка.

Сзади же расположена вся начинка тестера: 

МК стандартный, ATmega328, а вот питание выглядит интересно. Тут собран преобразователь на два выходных напряжения. Одно около 8 В подается на стабилизатор 7805 и идет на питание цифровой части. Второе же, около 34 В предназначено для проверки стабилитронов. Тут все просто, вместе с резистором на 10 кОм стабилитрон образует параметрический стабилизатор, напряжение с которого поступает на вход МК. Здесь же расположен контроллер заряда для АКБ.

На этом, пожалуй, закончим. Что могу сказать по поводу данного, и не только, тестера. Вещь, однозначно, полезная и должна быть в арсенале каждого, кто увлекается электроникой. Конкретно этим тестером очень удобно пользоваться за счет наличия корпуса и встроенного АКБ. Не надо думать, что батарейка оторвется или разрядится (а тот же M328 очень прожорливый) в самый неподходящий момент. Так же порадовало наличие функции проверки стабилитронов, т.к. довольно часто в закромах оказываются стабилитроны со стертой маркировкой.

Теги:


Опубликована: 28.05.2017
Изменена: 31.05.2017

6


Вознаградить

Я собрал
0

3

x

Оценить статью

  • Техническая грамотность
  • Актуальность материала
  • Изложение материала
  • Орфография

0

Средний балл статьи: 4.9
Проголосовало: 3 чел.

Данной короткой заметкой хочу пролить свет на вопрос целесообразности ремонта транзистор тестеров более-менее современного типа, с цветным экраном, но ещё без встроенного осциллографа, mp3 плеера и радио, а также хочу свести воедино информацию по восстановлению конкретно тестера модели LCR-T7-H с платой версии T7-PLUS V0.1 после выхода из строя микроконтроллера atmega644.

Выход из строя микроконтроллера по причине подключения к прибору не разряженного конденсатора — это наиболее частый сценарий поломки транзистор тестеров всех мастей, включая более современные LCR-TС1/TС2/T7/T7-H, которые на плате имеют такие элементы защиты как супрессор P4SMA6V8A или P4SMA6V8C, а также защитный диод SRV05-4.TCT.

В случае наличия такой защиты, менять приходится не только микроконтроллер, но и защитный диод, и чуть реже — супрессор.

В прошлом, наибольшее распространение получили транзистор тестеры на базе микроконтроллеров ATmega168, 328.

Позже начали выпускать тестеры на базе ATmega164, 324, 644 и 1284.

На мой взгляд, с ATmega328 было проще, так как он очень распространен, и поэтому дёшев и доступен.
Данную микросхему не нужно искать или ждать доставки, сейчас практически у каждого дома есть плата ардуино нано, откуда он может быть изъят.

С современными тестерами LCR-TС1/TС2/T7/T7-H ситуация сложнее.

Чаще всего они построены на базе ATmega328, 324 и 644, но в последнее время все больше в продаже тестеров на базе:

1) Китайской реплики ATmega328 под именем LGT8F328 — и это не совсем плохо, так как плату при необходимости можно не сложно переделать на ATmega328

2) Немного хуже, когда плата на базе микроконтроллера APT32F172K8T6 — платы на данном контроллере не подлежат переделке, прошивку обновить невозможно, но есть загрузчик, при помощи которого данная прошивка должна обновляться через USB, но на данный момент прошивки в свободном доступе нет.

Мне в руки попала плата тестера FNIRSI-TC1 на данном микроконтроллере.
Из минусов — плата на APT32F172K8T6 не умеет измерять сдвоенные диоды, igbt транзисторы, от лукавого показывает ESR конденсаторов.

Также существует целый ряд экранов, поддерживаемых альтернативными прошивками от Karl-Heinz Kübbeler (k — в конце версии прошивки) и Markus Reschke (m — в конце версии прошивки), но этот список весьма ограничен.

В целом о видах тестеров несколько слов сказано, поэтому вернёмся к основной теме, а именно — тестеру модели LCR-T7-H.

Дополнительная информация

Данный тестер построен на базе ATmega644, и в нем были пробиты контроллер ATmega644 и защитный диод SRV05-4.TCT.

По началу показалось, что проблема решается не сложно, диод SRV05-4.TCT можно не ставить, прибор будет работать и без него, остаётся заменить только микроконтроллер.

Но оказалось, что на данный момент нет библиотек для сборки прошивки с поддержкой установленного в приборе 14 pin экрана 128х128 точек (на плате: 128LCD v1.1, на схеме: W-HTD150M3-C, микросхема: HC573):

Дополнительная информация

И поэтому необходим экран донор — 6 pin ST7735 экран 128х160 точек.

В моем случае экран был куплен с платы донора на контроллере APT32F172K8T6, как позже оказалось, под экраном не было ограничивающих резисторов по линиям данных и питание ему было необходимо 3,3В. Ещё немного позже, когда была немного подпалена подсветка и экран было решено оторвать от платы — на шлейфе прочитал надпись CL177SP1-14B

Дополнительная информация

В общем, если брать мою вводную информацию, то потребовалось:

1) По экрану:

— по аналогии с оригинальной платой, на которой он стоял — установить резисторы по 1,8кОм (на китайской плате были по 1,6кОм);

— организовать питание 3,3В, в моем случае — организовал при помощи линейного преобразователя 5В — 3,3В.


2) Микроконтроллер управления питанием STC15L104W достаточно было прошить через TTL преобразователь программой stc-isp.

Прошивка находится здесь:
github.com/atar-axis/tc1-u4/tree/master

Из особенностей — для запуска процесса прошивки в программе stc-isp необходимо выбрать микроконтроллер, установить 12МГц, и одновременно подключать к STC15L104W минус питания и нажимать на кнопку «тест» на плате.

Если с прошивкой или микросхемой проблема, то можно STC15L104W заменить либо на схему на 2-х диодах, либо на схему на транзисторах.

Варианты схем, фото не мои:

На транзисторах:

На диодах:

В моем случае использовал схему на 2-х диодах и добавил от себя резистор на 470 Ом на 11-й pin atmega644 (контакт PD2) для дополнительной защиты порта. Почему такой номинал — попался под руку на плате доноре диодов.


По логике работы STC15L104W заметил:
— 4,0В на 10-й pin atmega644 (контакт PD1) — подтверждение наличия питания;
— 5,0В на 11-й pin atmega644 (контакт PD2) — подается при включении.

3) Микроконтроллер atmega644pa необходимо заменить на новый и прошить прошивкой, в данном случае наиболее подходящей оказалась прошивка LCR-TC1 v1.43m / 1.13k для ATMega644 16 МГц от indman прямо из «шапки» одного известного форума.

Из особенностей можно отметить только fuse bit:

Fuse Low Byte: FF
Fuse High Byte: D9
Fuse Extended Byte (Fuse Byte): FD
Lock Byte: FF

Обновил прошивку до версии 1.50m

По итогу, прибор работает, из проверенного измеряет:
— емкость и esr конденсаторов, потери не отображает (проверял от 33пкФ до 5700мкФ);

— показатели стабилитронов (проверил 2,2-18В);
— транзисторы pnp, npn, mosfet, igbt;
— сдвоенные диоды;
— сопротивление и индуктивность катушек;
— работает ir приемник;
— ну и сопротивление резисторов.

По деньгам:
— экран и плата донор, с которой взял защитный диод — обошлись в сумме около 7$;
— пара микроконтроллеров с алиэкспресс — также обошлись в сумме около 7$.
Итого: около 14$…

В целом, было интересно покопаться с данным железом, восстановить, пособирать самому прошивку, попробовать варианты чужих прошивок, и я ещё буду проводить эксперименты с прошивками в свободное время…

Но экономически… это фиаско, и не целесообразно, и нет ожидаемой радости, так как экран не попадает по центру окна в корпусе, получается немного не эстетично (видно на первом фото).

Греет надежда, что может быть появится прошивка с поддержкой родного экрана, который пока будет сохранен для этой цели, и лотерея с покупкой нового тестера с цветным экраном.
Если брать по низу рынка, то купить тестер на базе настоящего микроконтроллера ATmega324/328/644 — сложно, а с поддельным — нет смысла.

По личному опыту владения двумя тестерами (старым монохромным LCR-T4 NoStripGrid на базе ATmega328 и новым LCR-T7-H с цветным экраном на базе ATmega644), хочу сказать что старого тестера хватает на 90%.

Хоть приборы и дополняют друг друга, но если старому добавить скорости работы и тест стабилитронов, то новый прибор сможет выделиться только цветным экраном, встроенным литиевым аккумулятором и компактностью корпуса.

Имхо, по цене, универсальности и ремонтопригодности, LCR-T4 на голову выше LCR-T7-H.

Спасибо за внимание, надеюсь было познавательно.

Multi Function Tester T7 Обзор инструкция

LCR-T7 тестер радиодеталей (радиокомпонентов). Обзор и тестирование.Подробнее

LCR-T7 тестер радиодеталей (радиокомпонентов). Обзор и тестирование.

Многофункциональный тестер радиодеталей Multi function Tester TC1Подробнее

Многофункциональный тестер радиодеталей Multi function Tester TC1

Обзор многофункционального тестера электронных компонентов Longrunner TC1, День новых инструментов, вторникПодробнее

Обзор многофункционального тестера электронных компонентов Longrunner TC1, День новых инструментов, вторник

Как на самом деле повысить точность многофункционального тестера TC1 с помощью советов по калибровкеПодробнее

Как на самом деле повысить точность многофункционального тестера TC1 с помощью советов по калибровке

Testador de componentes T7-H é bom? vale a pena? review multi function tester T7 TC T7 HПодробнее

Testador de componentes T7-H é bom? vale a pena? review multi function tester T7 TC T7 H

Эволюция тестера электронных компонентов (обзор многофункционального тестера TC1)Подробнее

Эволюция тестера электронных компонентов (обзор многофункционального тестера TC1)

LCR-метр — MTester T7 — ​​Обзор тестера транзисторовПодробнее

LCR-метр - MTester T7 - ​​Обзор тестера транзисторов

События

Чем проверить резистор – омметром. А диод? Мультиметром. А конденсатор? Ёмкостеметром. А транзистор…? Но не проще ли купить один прибор, который и будет проверять работоспособность и основные параметры светодиодов, диодов, конденсаторов, транзисторов, резисторов и прочих радиоэлементов. В общем пришло время покупки такого транзистор-тестера на Алиэкспрессе, тем более цена его меньше 30 долларов. Толчком же послужил ремонт стиральной машинки автомата, где для того чтобы проверить электролиты – пришлось бежать к знакомому радиолюбителю. У него-то и заметил такой прибор, сразу воспылав к нему симпатией (к прибору естественно).

комплект тестера T7

На китайском сайте имелось штук 5 основных моделей из недорого ценового сегмента. Решил купить лучшее из худших – транзисторный тестер Т7. Его выгодно отличает наличие корпуса (у многих они так и остаются бескорпусными), литиевый аккумулятор вместо Кроны 9В и цветной красивый дисплей. Ещё там есть возможность расшифровки ИК сигнала, так что приборчик вышел полный шикардос!

Характеристики тестера T7

  • Автоматическое определение NPN и PNP транзисторов, n-канальный и p-канальный МОП-транзистор, диод (в том числе двойной диода), тиристор, транзистор, резистор, конденсатор и другие компоненты.
  • Автоматический тест компонента и отображение на ЖК-дисплее
  • Может обнаружить защитный MOSFET диод, коэффициент усиления, определении выводов транзистора
  • Измерение емкости MOSFET, пороговое напряжение
  • Управление одной кнопкой, автоматическое отключение.
  • Всего 20 nA тока при отключении.
  • Автоматическая идентификация компонентов по расположению ног.
  • Измерения биполярного транзистора – коэффициент усиления и база-эмиттер пороговое напряжение.
  • Выявление транзисторов Дарлингтона.
  • Может одновременно измерять два резистора, так что вы можете измерить потенциометр.
  • Измерение сопротивления с разрешением 0.1 Ом, до 50 МОм может быть измерено.
  • Можно измерить конденсаторы емкости 30pF – 100mf, разрешение 1pF.
  • Измерить эквивалентное последовательное сопротивление ESR, разрешение 0.01 Ом.
  • Может показать прямое падение напряжения на диоде.
  • LED определяет как прямое падение напряжения на диоде
  • Может измерять у диода проходную емкость. Если биполярный транзистор – тоже покажет проходную емкость.
  • Питание от литиевого аккумулятора 1000 мА/ч
  • Цена 25-30$

Комплектация

В комплекте идут щупы на проводках, которыми можно измерять детали без вставляния в гнездо. И даже пару тестовых деталей продавец не пожалел в коробочку вложить (+ красный светодиод и конденсатор 10 мкФ с резистором 200 Ом к моим запасам).

Работа с устройством

Тут всего одна кнопка – вставили деталь и нажали «Тест». При включении на пару секунд высвечивает состояние заряда аккумулятора, после чего приступает к тестированию. Результат высвечивается на чёрном фоне цветными символами – красиво! Далее результаты проверок разных деталей.

   

   

Разборка

Конечно решил заглянуть под крышечку. Внутри та-же знакомая плата, что и в младших моделях. Подозреваю, что всё отличие заключается в прошивке и организации питания. Ну и ладно.

ТРАНЗИСТОР-ТЕСТЕР Т7 - плата

детали на ТЕСТЕР Т7

Схема

ТРАНЗИСТОР-ТЕСТЕР Т7 - похожая схема

Основа этого транзисторного цифрового тестера – микроконтроллер AtMega-328. Вот приблизительная схема, плюс введите поправку на модуль заряда АКБ и преобразователь 3,7>9 вольт. Заряжается он от Micro-USB. Для удобства контроля процесса возле гнезда выведен маленький светодиод. Двухцветный.

Плюсы – одни плюсы! Пластиковый корпус качественный и удобный, экран LCD чёткий и яркий, питание аккумуляторное, держит долго (на 100 замеров хватит), универсальный, недорогой (по крайней мере для меня 1500 рублей это нормально), внешние щупы имеются. В общем берите – не пожалеете!

   Форум

Фото 1/2 LCR-T7, Тестер транзисторов с ИК-приёмником

Изображения служат только для ознакомления,
см. техническую документацию


Добавить в корзину 1 шт.


на сумму 2 100 руб.

Номенклатурный номер: 9001183359

Артикул: LCR-T7

Бренд / Производитель: FNIRSI

Описание

Характеристики

  • Модель: ESR LCR-T7 Multifunction Tester FNIRSI
  • Питание: 5В постоянного тока DC
  • Цифровой контроллер: Atmega324P Atmel
  • Дисплей: цветной ЖК TFT 160*128, диагональ 45мм
  • Компоненты, диапазоны тестированиятранзисторы биполярные и полевые, IGBT JFET<6мАрезисторы, переменные и подстроечные резисторы 0.5 Ом ~ 50 МОм(свето)диоды, сдвоенные диоды, стабилитроны (макс.30В)маломощные симисторы, тиристоры, ТРИАКдроссели (катушки индуктивности) 0.01 мГн ~ 20 Гнконденсаторы 25 пФ ~ 100 мФ, ESRбатарея/аккумулятор от 0.1В до 4.5В
  • Погрешность: менее 2%
  • ИК-порт: детекция цифрового ИК-сигнала, ШИМ-формы (протокол Hitachi)
  • Распознание и диагностика: автоматический режим
  • Интерфейс подключения: 3-линейный с разъёмом 14 контактов (ZIF панель с зажимом)
  • Батарея: внутрикорпусной аккумулятор Li-Pol 3.7В 300мАч или 550мАч
  • Индикатор: состояние заряда батареи
  • Порт USB: интегрированное ЗУ, 5В
  • Сервисная функция: самокалибровка
  • Автовыключение: таймер 30 секунд
  • Температура эксплуатации: -10°С ~ +50°С
  • Размеры: 90 х 70 х 28мм
  • Вес: 112г

Технические параметры

Измерение сопротивления 0.5 Ом…50 МОм
Измерение емкости 25 пФ…100 мФ
Госреестр РФ нет
Вес, г 112

Техническая документация

Сроки доставки

Доставка в регион Камышеваха

Курьер 4 декабря1 644 руб.2
ПВЗ Яндекс Доставка 4 декабря1 99 руб.2

Цена и наличие в магазинах

Ростов-на-Дону,
проспект Соколо́ва, 53/182
нет в наличии

Розничная цена: 2 100 руб.

Понравилась статья? Поделить с друзьями:
  • Lcr tc1 инструкция по применению на русском
  • Lcr t4 tester инструкция на русском
  • Lci g30 p37 4 инструкция
  • Lcr t4 esr метр инструкция калибровка
  • Lbb инструкция по применению цена отзывы аналоги цена