Зу 150т инструкция по применению автомобильное зарядное устройство

На чтение 11 мин Просмотров 24 Опубликовано Обновлено

Схемы простых мощных зарядных устройств для аккумуляторов.

Трансформаторные ЗУ для автомобильных аккумуляторов с высоким КПД: простейшие на гасящих конденсаторах, а также импульсные на тиристорах, симисторах и мощных полевых транзисторах.

Для начала давайте разомнёмся и забудем про такой параметр, как КПД. Предположим, что есть острое желание зарядить автомобильный АКБ, но нет возможности ввиду полного отсутствия зарядки. Также сделаем предположение, что в хозяйстве затерялись: лампа накаливания на 220 вольт, диодный мост с допустимым током, превышающим ток, при котором мы будем заряжать аккумулятор, либо, на худой конец, просто силовой (выпрямительный) диод с таким же допустимым током и максимальным обратным напряжением — не менее 300В.

Рис.1

Спаяв схему, приведённую на Рис.1 слева, и озадачившись соблюдением техники безопасности, а также полярности подключения ЗУ к АКБ, получаем вполне себе работоспособное устройство, обеспечивающее нормированный и постоянный ток заряда подопечного аккумулятора.
Поскольку 220 вольт — это действующее значение переменного напряжения сети, то силу тока, протекающую через АКБ можно рассчитать по простой формуле:
Iзар(А) = Pламп(Вт) / (220 — Uакб)(В) ≈ Pламп(Вт) / 220(В) .
Параллельное соединение двух ламп — удваивает зарядный ток, трёх — утраивает и т. д. до разумной бесконечности.
Схема, изображённая на Рис.1 справа, выдаёт ток, вдвое меньший по сравнению с предыдущей.
Большим преимуществом приведённых схем является возможность зарядки любых аккумуляторов, независимо от собственных значений их напряжений.

Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч представлена на Рис.2.


Рис.2

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4.
Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 кв. см.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

В данной схеме высокий показатель КПД достигнут за счёт применения в качестве токозадающих элементов конденсаторов, которые, как известно, имеют реактивную проводимость и не выделяют на себе тепловой мощности.
Далее будут приведены импульсные (ключевые) зарядные устройства, построенные по другому принципу, но также отличающиеся низким собственным энергопотреблением.

Одними из первых импульсных ЗУ, появившихся на рынке, были тиристорные устройства.
Вообще, тиристор — это прибор достаточно капризный и требующий для надёжной работы соблюдения определённого набора условий. Именно поэтому — большинство простейших схем, приведённых в различных источниках, грешат не очень стабильной работой и необходимостью подбора элементов.

Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т. Ходасевича «Зарядные устройства», многократно повторённую многочисленной радиолюбительской братвой и изображённую на Рис.3.


Рис.3

Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, который, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VDI. VD4.
Узел управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.
Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Конденсатор С2 — К73-11, ёмкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохранитель F1 — плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток. Диоды VD1. VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта устройств с теплоотводами желательно использовать теплопроводные пасты.
Вместо тиристора КУ202В подойдут КУ202Г — КУ202Е. Проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.
В приборе может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.
Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (к примеру, при 24. 26 В сопротивление резистора следует увеличить до 200 Ом).

Несмотря на популярность и работоспособность приведённый схемы, при функционировании устройства многие отмечают нехарактерное гудение трансформатора на частотах, отличных от 100 Гц. Связано это с отсутствием чётких и быстрых фронтов/спадов у сигналов, поступающих на управляющий вход тиристора при его включении/выключении, что в свою очередь создаёт условия для возникновения процессов генерации в нагрузке.

Несколько лучше и надёжнее работают импульсные зарядные устройства, в которых коммутирующий элемент выполнен на симметричном (двухполярном) аналоге тиристора — симисторе.
На Рис.4 приведена схема подобного устройства из вышеупомянутой книги Т. Ходасевича.


Рис.4

Описываемое ниже простое зарядное устройство имеет широкие пределы регулирования зарядного тока — практически от 0 до 10А и может быть использовано для зарядки различных аккумуляторов на напряжение 12В.
В основу устройства положен симисторный регулятор с маломощным диодным мостом VD1-VD4 и резисторами R3 и R5. После подключения устройства к сети при плюсовом её полупериоде начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединённые резисторы R1 и R2. При минусовом полупериоде — через те же R1 и R2, диод VD2 и резистор R5. В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется лишь полярность его зарядки. Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1.При этом симистор открывается. В конце полупериода симистор закрывается. описанный процесс повторяется в каждом полупериоде сети.
Общеизвестно, что управление симистором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса.
Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора. В описываемом зарядном устройстве такими резисторами являются резисторы R3 и R5, которые в зависимости от полярности полупериода сетевого напряжения поочерёдно подключаются параллельно первичной обмотке трансформатора.
Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5, VD6. Этот же резистор формирует импульсы разрядного тока, которые продлевают срок службы АКБ.

Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт.
При изготовлении трансформатора задаются следующими параметрами: напряжением на вторичной обмотке 20В при токе 10А.

Несколько упростить описанное выше устройство можно применив в его высоковольтной части динистор (Рис.5).

Рис.5

Данную схему с диаграммами мы подробно рассмотрели на странице ссылка на страницу. Поэтому повторяться не буду, скажу лишь, что наличие снабберной цепи, показанной на схеме синим цветом — обязательно. В качестве нагрузки выступает первичная обмотка сетевого трансформатора.

В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные полевые транзисторы. Одно из подобных устройств было подробно описано в журнале Радио №5 2011г на странице 44.

Блок управления зарядным устройством представляет собой импульсный генератор, собранный на элементах DD1.1 и DD1.2 (см. схему на рис. 6) и позволяющий регулировать скважность импульсов, буферный усилитель — инвертор на элементах DD1.3 и DD1.4 и переключающий регулирующий элемент — полевой транзистор VT1.
При указанных на схеме номиналах элементов частота генератора — около 13 кГц. Так как сопротивление открытого канала транзистора VT1 очень мало (0,017 0м) и работает он в переключательном режиме, при токе зарядки до 5 А транзистор практически не нагревается — рассеиваемая тепловая мощность не превышает 0,55 Вт.
В качестве понижающего использован сетевой трансформатор габаритной мощностью 150 Вт с вторичной обмоткой, обеспечивающей постоянное напряжение 16. 17 В на конденсаторе С1 и зарядный ток до 6 А.
Выпрямительный мост собран на диодах Шоттки, VD1 — сдвоенный SBL4045PT, a VD2 и VD3 — одиночные 10TQ045.
Если вторичную обмотку сетевого трансформатора намотать с отводом от середины, число диодов в выпрямителе и тепловыделение от них можно уменьшить вдвое.
Чертёж платы представлен на Рис.7.

Описанный узел управления также можно использовать в осветительных и нагревательных приборах, для изменения частоты вращения коллекторных электродвигателей. При этом питающее напряжение устройств можно варьировать в широких пределах, определяемых максимально допустимыми параметрами для переключательного транзистора и, конечно же, выпрямителя. В частности, используемый в узле транзистор IRFZ46N имеет максимальную рассеиваемую мощность 107 Вт, максимальный ток через канал 53 А, максимальное напряжение сток—исток 55 В. Возможна его замена транзистором IRFZ44N.
Предлагаемое устройство позволяет регулировать мощность от нуля до максимального значения, а регулирующий транзистор не нуждается в эффективном отведении тепла при увеличении тока нагрузки до 5 А.

В результате длительной или неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, что приводит к их деградации и последующему выходу из строя. Известен способ восстановления таких батарей методом заряда их «ассиметричным» током. При этом соотношение зарядного и разрядного тока выбирается 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

На Рис.8 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.
Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.
В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22. 25 В.
Измерительный прибор РА1 подойдет со шкалой 0. 5 А (0. 3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

Источник

Зарядные
устройства
типа ЗУ

Эти
зарядные
устройства
выпускаются
в двух
исполнениях:
компактные и
универсальные.

Компактные:
ЗУ-75, ЗУ-95, ЗУ-110 и ЗУ-150



Компактные
зарядные
устройства
предназначены
для зарядки
от одного до
четырех Ni-Cd
аккумуляторов
размера АА(R6) с
рабочим
напряжением
1,2В. Питание
устройств
осуществляется
от сети
переменного
тока
напряжением
220В частотой 50Гц.
Устройства
обеспечивают
ток заряда от
75мА до 150мА.
Время заряда
выбирается в
соответствии
с указаниями
на
аккумуляторе.

 

Тип

Ток заряда, мА

Размер заряжаемых аккумуляторов

Количество одновременно заряжаемых аккумуляторов

ЗУ-75

75

AA (R6)

от 1 до 4-х

ЗУ-95

95

AA (R6)

от 1 до 4-х

ЗУ-110

110

AA (R6)

от 1 до 4-х

ЗУ-150

150

AA (R6)

от 1 до 4-х

Универсальные:
УЗУ-50, УЗУ-75, УЗУ-95,
УЗУ-110



Универсальные
зарядные
устройства
предназначены
для зарядки
от одного до
четырех Ni-Cd
аккумуляторов
размера АА (R6) с
рабочим
напряжением
1,2В или одного
аккумулятора
размера 6F22 (�НИКА�,
�7Д-0,125� или их
аналогов) с
рабочим
напряжением 9В.
Питание
устройств
осуществляется
от сети
переменного
тока
напряжением
220В частотой 50Гц.
Устройства
обеспечивают
ток заряда от
50мА до 110мА при
зарядке
аккумуляторов
размера АА (R6) и
ток заряда
12,5мА
при зарядке
аккумулятора
размера 6F22.
Время заряда
выбирается в
соответствии
с указаниями
на
аккумуляторе.

 

Тип

Ток заряда,

мА

Размер заряжаемых аккумуляторов

Количество одновременно заряжаемых аккумуляторов

УЗУ-50

50

AA (R6); 6F22 (НИКА); 7Д-0,125

От 1 до 4-х размера AA;

или 1 — 6F22 (НИКА); 7Д-0,125

УЗУ-75

75

AA (R6) ); 6F22 (НИКА); 7Д-0,125

От 1 до 4-х размера AA;

или 1 — 6F22 (НИКА); 7Д-0,125

УЗУ-95

95

AA (R6) ); 6F22 (НИКА); 7Д-0,125

От 1 до 4-х размера AA;

или 1 — 6F22 (НИКА); 7Д-0,125

УЗУ-110

110

AA (R6) ); 6F22 (НИКА); 7Д-0,125

От 1 до 4-х размера AA;

или 1 — 6F22 (НИКА); 7Д-0,125

| Зарядные устройства
| | Блоки питания | | Виброанализатор
| | Усилитель | | Центровщик
валов |

Hosted by uCoz

10 часов назад, Valentin Shum сказал:

почему на выходах зарядника около 3.4 вольта(в том числе и подобных простых зарядках без контроля заряда ). Который по инструкции предназначен только для заряда батареек 1.2 вольта

Схему дай, посмотрим, ответим.

10 часов назад, Valentin Shum сказал:

Да с подключенной батарейкой на выходах около 1.3 V.

Я даже больше скажу. Если вставить литиевый элемент, то при заряде там будет 3.5-4.5в (в зависимости от степени заряда).

10 часов назад, Valentin Shum сказал:

Так вот на плате зарядника ЗУ-150 я вижу два конденсатора зеленый и синий

По приведённой схеме и по ранее выложенной фотке, я ничего не вижу. Схемы получаются разные.

10 часов назад, Valentin Shum сказал:

а вместо другого поставить допустим на 10 микрофарад и ток заряда должен возрасти в несколько раз ?

Можно и поставить, возможно и вырастет. Но прежде чем о таком мечтать, нужно вникнуть в схему, чтобы понять, как на это скажут другие элементы схемы.

10 часов назад, Valentin Shum сказал:

два конденсатора зеленый и синий.

Цвет радиодеталей никоим образом не говорит о их характеристиках.

zayac писал(а):

а маркировка напряжения на конденсаторе это ПW или F2 ?

Неважно что там написано. Балластный конденсатор для сети ~220(240)В должен быть на 400 Вольт или больше.

zayac писал(а):

Только я не могу понять зачем в зарядке батареек 1.2 V Стабилитроны для стабилизации 4.7 V

Вот что удалось найти в сети.

Вложение:

ЭУ-150 МИТО.jpg
ЭУ-150 МИТО.jpg [ 53.21 Кб | Просмотров: 6297 ]

Исходя из надписи, эта штука рассчитана на никель-кадмиевые аккумуляторы (1,2В). Тогда стабилитроны, ограничивающие напряжение заряда на отдельных банках, должны быть 1,2…1,3В. Но в даташите я не нашёл BZX55C менее 2,0 Вольт. Так что скорее всего, разработчик использует эффект снижения напряжения стабилизации при увеличении тока или ещё что-нибудь умозрительное, чтобы сделать ЗУ всеядным.

Но вообще-то, это игрушечное зарядное устройство, так как стабилитроны такой мощности не могут корректно ограничивать ток, даже если номинал соответствует предельному напряжению заряда. Есть правда ещё супрессоры — защитные диоды. Те могут держать большие токи при малом размере. Но там дискретные значения напряжения. Так что всеядную зардку на них корректно тоже построить нельзя.

Правильнее было бы использовать диоды средней мощности в прямом направлении, как на показанной мною схеме. Например, если взять один кремниевый диод на 0,6В и два диода Шоттки на 0,4В, то получим 1,4В для заряда никель-металлгидридных аккумуляторов. Два кремниевых на 0,6В — для никель-кадмиевых.

Я бы не решился использовать подобное ЗУ без присмотра, особенно если есть банки с повышенным сопротивлением.

Если в вашем авто установлена 12-вольтовая АКБ, то для ее подпитки прекрасно подойдет зарядное устройство «Вымпел-150», выпускаемое под брендом «Орион».

Оно может восстановить аккумуляторы, которые разрядились не до конца (а также батареи, которые продолжительный период оставались абсолютно разряженными).

Общие данные

Данная зарядка является отечественной продукцией, ее выпускают в городе Санкт-Петербург на предприятии «Орион». Само изделие сделано из пластмассы высокого качества.

Устройство легко транспортируется, поэтому его без проблем можно брать с собой. В зимний период благодаря прибору вы сможете обеспечить АКБ предпусковую зарядку.

На фронтальной части изделия есть специальный индикатор, по которому можно определить уровень  заряженной АКБ:

  • свечение отсутствует – или сломана зарядка, или неисправна электрическая сеть;
  • красный светодиод – или ЗУ подключено к сети, или идет подпитка (далее светодиод  станет светиться желтым, а потом — зеленым);
  • светится оранжевым светом – АКБ напиталась примерно наполовину;
  • лампочка светится желтым цветом – уровень подпитки – 70-80%;
  • индикатор стал зеленым – батарея полностью подпитана.

В «Орион Вымпел-150» есть жалюзи, которые не дают ему перегреваться. А в нише сзади зарядного устройства лежат зажимы для клемм и шнур для электропитания.

Технические свойства ЗУ

Технические свойства

У данного изделия в наличии следующие технические параметры:

Параметры

В конце этого материала вы найдете детальное руководство к эксплуатации «Вымпел-150».

Главные отличия зарядного устройства

Главные отличия

«Орион Вымпел-150» отличается от других подобных изделий в некоторых нюансах. Среди них:

  • подпитка АКБ происходит в автоматическом режиме, без вмешательства человека;
  • в процессе подпитки при необходимости включается защита от короткого замыкания;
  • на выходах есть ограничитель, который контролирует температуру, – если она растет, то ограничитель понижает ток и соответственно не дает перегреваться зарядке;
  • невысокая стоимость.

Подходит для восстановления лишь 12-вольтовых автомобильных аккумуляторов.

«Орион Вымпел-150»: процесс подпитки

Процесс подпитки

Есть порядок подпитки АКБ при помощи данного зарядного устройства:

  1. К клеммам батареи подсоедините зажимы ЗУ, обязательно соблюдая полярность. Красный «крокодил» подсоедините к «плюсу», черный «крокодил» подключите к «минусу». Несоблюдение полярностей может не только «убить» устройство, но и стать причиной взрыва.
  2. Лишь после этого подсоедините ЗУ к сети в 220V. Лампочка над надписью «режим»  станет красным. Это говорит о том, что процесс подпитки запустился.
  3. Изделие будет питаться в автоматическом режиме.
  4. Взяв главную часть зарядки, аккумулятор перейдет в автоматический режим переключения. Аккумулятор подпитывается на 70-90% – все зависит от степени его износа.
  5. Для 100% заряда дайте батарее функционировать в режиме переключения. В этот момент светодиод будет мерцать то красным светом, то зеленым, или же оранжевым цветом. Для изношенной батареи это шанс полностью возобновить свою энергию.
  6. По завершении зарядки отсоедините зарядное устройство «Орион» от сети и снимите клеммы. Протрите их, а также «крокодилы» сначала влажной, потом сухой тряпкой.

Электрическая схема

Схемы

Инструкция по использованию

Инструкция

Руководство по эксплуатации зарядного устройства «Орион Вымпел-150» есть тут: https://istochnikipitaniy.ru/wp-content/uploads/2019/01/orion_150.pdf.

Есть что сказать по поводу зарядного устройства «Вымпел-150»? Возникли вопросы? Пишите нам в комментариях.

Мнения автовладельцев

Александр Д., 54 года, г. Москва

Приобрел этот прибор «Орион» много лет назад и ничуть не пожалел. Она неоднократно меня выручала, я очень доволен!

Игорь С., 29 лет, г. Ростов

Очень простая в использовании вещь, очень быстро заряжает батарею. У меня претензий по ее работе нет. Да и стоимость у нее хорошая.

Виктор Л., 65 лет, г. Нальчик

У меня был изношенная АКБ. Зарядное устройство «Орион Вымпел-150» возобновил его энергию на все сто (хотя и делало это довольно долго). Автомобиль теперь заводится моментально.

Понравилась статья? Поделить с друзьями:
  • Зу 120м инструкция по применению как пользоваться
  • Зоошампунь чистотел инструкция по применению
  • Зоонорм инструкция по применению для животных
  • Зу 120м инструкция по применению зарядное устройство
  • Зоотехник по кормлению должностная инструкция